Answer:
Ammonia fortis liquor is a saturated solution of ammonia in water. It is also called 880 ammonia. Its relative density is 0.880. It is stored in tightly sealed bottles in a cold place. (Sorry if I'm wrong)
Explanation:
Answer:
The precipitate is CuS.
Sulfide will precipitate at [S2-]= 3.61*10^-35 M
Explanation:
<u>Step 1: </u>Data given
The solution contains 0.036 M Cu2+ and 0.044 M Fe2+
Ksp (CuS) = 1.3 × 10-36
Ksp (FeS) = 6.3 × 10-18
Step 2: Calculate precipitate
CuS → Cu^2+ + S^2- Ksp= 1.3*10^-36
FeS → Fe^2+ + S^2- Ksp= 6.3*10^-18
Calculate the minimum of amount needed to form precipitates:
Q=Ksp
<u>For copper</u> we have: Ksp=[Cu2+]*[S2-]
Ksp (CuS) = 1.3*10^-36 = 0.036M *[S2-]
[S2-]= 3.61*10^-35 M
<u>For Iron</u> we have: Ksp=[Fe2+]*[S2-]
Ksp(FeS) = 6.3*10^-18 = 0.044M*[S2-]
[S2-]= 1.43*10^-16 M
CuS will form precipitates before FeS., because only 3.61*10^-35 M Sulfur Ions are needed for CuS. For FeS we need 1.43*10^-16 M Sulfur Ions which is much larger.
The precipitate is CuS.
Sulfide will precipitate at [S2-]= 3.61*10^-35 M
Answer is: 4,4 grams <span>of carbon dioxide gas would be produced.
</span>Chemical reaction: CaCO₃ + 2HCl → CaCl₂ + CO₂ + H₂O.
m(CaCO₃) = 10 g.
n(CaCO₃) = 10 g ÷ 100 g/mol.
n(CaCO₃) = 0,1 mol.
From chemical reaction: n(CaCO₃) : n(CO₂) = 1 : 1.
n(CO₂) = 0,1 mol.
m(CO₂) = n(CO₂) · M(CO₂).
m(CO₂) = 0,1 mol· 44 g/mol.
m(CO₂) = 4,4 g.