Answer:
0.557 s
Explanation:
Given:
v₀ = 5.46 m/s
v = 0 m/s
a = -9.8 m/s²
Find: t
v = at + v₀
0 m/s = (-9.8 m/s²) t + 5.46 m/s
t = 0.557 s
Define
g = 9.8 m/s², acceleration due to gravity, positive downward.
Assume that wind resistance may be neglected.
Frog A:
u = 0.551 m/s, launch velocity, upward.
When the frog lands back on the pad, its vertical position is zero, and its vertical velocity will be 0.551 m/s downward.
If the time of flight is t, then
(0.551 m/s)*(t s) - 0.5*(9.8 m/s²)*(t s)² = 0
0.551t - 4.9t² = 0
t = 0, or t = 0.1124 s
t = 0 corresponds to launch, and t = 0.1124 s corresponds to landing.
Frog B:
Launch velocity is 1.75 m/s
When t = 0.1124 s, the position of the frog is
s = (1.75 m/s)(0.1124 s) - 0.5*(9.8 m/s²)*(0.1124 s)²
= 0.135 m
The velocity of frog B is
v = (1.75 m/s) - (9.8 m/s²)*(0.1124 s)
= 0.6485 m/s
Answer:
When frog A lands on the ground,
Frog B is 0.135 m above ground and its velocity is 0.649 m/s upward.
Answer:
Explanation:motion are ubiquitous in everyday life. For example, when you jump, your legs apply a force to the ground, and the ground applies and equal and opposite reaction force that propels you into the air. Engineers apply Newton's third law when designing rockets and other projectile devices.
The answer would be “the study of matter and energy and how they interact”. :))
Molecules and polyatomic ions are formed by covalent bonds.