Jdusjfbehsbdbegsuxbshsudnd
Answer 1:
Isomers are compounds with same molecular formula but different structure formula. Isomers are classified into two types
a) Structural/configurational isomers
b) Stereo isomers
In structural/configurational isomers atom and functional groups are attached in different fashion. Structural isomers may have different functional groups. Structural isomers are further classified as chain isomers, position isomers and functional isomers. In case of stereo-isomers, compounds have same functional group, but different orientation in space. They also have difference activity towards polarized light.
Answer 2:
Hexane has a molecular formula of C6H14. It exhibits following structural isomers
a) hexane<span>,
b) 2-methylpentane
c)3-methylpentane
d) 2,2-dimethylbutane
e) 2,3-dimethylbutane
Thus, in all there are 5 isomers of hexane
Answer 3:
</span><span>Butane has two possible isomers but that decane has 75 possible isomers. This can be attributed to the fact that butane has 4 carbon atoms, while decane has 10 carbon atom. As the number of carbon atom increases, there are higher possible sites of linkage, in different fashion. Therefore, as number 69 of carbon atoms increases, number of different possible isomers increases.
Answer 4:
It has been observed that, though isomers have same molecular formula, but the have different boiling points. Infact, branched isomers have lower boiling point as compared to linear isomers. For example, hexane has boiling point = 69 oC, 2 methyl pentane has boiling point = 60 oC, 2,4, dimethyl butane has boiling point = 58 oC and 2,2 dimethyl butane has boiling point = 50 oC. Thus, it can be observed that branched isomers have lower boiling points as compared to linear isomers. This can be attributed to lower van der Waal's forces of interaction in branched isomers as compared to linear isomers.
</span><span>
</span>
Explanation:
- Evaporation is defined as a process in which liquid state of water is changing into vapor state.
So, we need to break the bonds of liquid substance in order to convert it into vapor state. And, energy is absorbed for breaking of bonds which means that evaporation is an endothermic process.
Hence, the statement evaporation of water is an exothermic process is false.
- When a hydrocarbon reacts with oxygen and leads to the formation of carbon dioxide and water then this type of reaction is known as combustion reaction.
A combustion reaction will always release heat energy. Hence, combustion reaction is exothermic in nature.
- When energy is transferred as heat from the surroundings to the system then it means energy is being absorbed by the system. And, absorption of heat is an endothermic process for which
is positive.
- Whereas when energy is transferred from system to the surrounding then it means energy is released by the system which is an exothermic process.
Hence, for an exothermic process value of
is negative.
Thus, we can conclude that statements which are true are as follows.
- A combustion reaction is exothermic.
- When energy is transferred as heat from the system to the surroundings,
is negative.
- For an endothermic reaction Deta H is positive.
There are certain rules to follow when naming covalent compounds. But first, let us look at the definition of Covalent Compounds.
<h3>
What are Covalent Compounds?</h3>
When covalent bonds aid the creation of a molecule, in which the atoms have at least one similar pair of valence electrons, a covalent compound is said to have been formed.
A very common example is water (H₂O)
<h3>
How are Covalent Compounds named?</h3>
To name a covalent compound, simply list the first element in the formula using the name of the element, then name the second element by adding the suffix "ide" to the stem of the second element's name.
If there is only one atom in the molecule of the first element, then no prefix should be added.
It is to be noted that if the second element in the compound is oxygen, then we should say:
- monox<em>ide</em> instead of monoox<em>ide</em> and
- triox<em>ide</em> instead of trox<em>ide</em>, all depending on how many atoms that are involved.
See the attached for the prefixes related to the various number of atoms in the compounds.
It is to be noted that the covalent compound to be named here is not stated hence the general answer.
Learn more about naming covalent compounds at:
brainly.com/question/9841865