Ok so I’m pretty sure the answer would be 2 because the mass of the rock would have the same mass on Earth as it has on the moon. Also the Density of a solid object remains constant meaning it doesn’t change. But the weight would change because the Earths gravitational pull is more than that of the moon. I hope this helped!
Answer:
Explanation:
Height of building
H = 6m
Horizontal speed of first balloon
U1x = 2m/s
Second ballot is thrown straight downward at a speed of
U2y = 2m/s
Time each gallon hits the ground
Balloon 1.
Using equation of free fall
H = Uoy•t + ½gt²
Uox = 0 since the body does not have vertical component of velocity
6 = ½ × 9.8t²
6 = 4.9t²
t² = 6 / 4.9
t² = 1.224
t = √1.224
t = 1.11 seconds
For second balloon
H = Uoy•t + ½gt²
6 = 2t + ½ × 9.8t²
6 = 2t + 4.9t²
4.9t² + 2t —6 = 0
Using formula method to solve the quadratic equation
Check attachment
From the solution we see that,
t = 0.9211 and t = -1.329
We will discard the negative value of time since time can't be negative here
So the second balloon get to the ground after t ≈ 0.92 seconds
Conclusion
The water ballon that was thrown straight down at 2.00 m/s hits the ground first by 1.11 s - 0.92s = 0.19 s.
I am not sure what this is
Answer:
a.After
second Mr Comer's speed

b.Distance travelled by Mr.Comer in
seconds

Explanation:
a. Lets recall our first equation of motion 
Now we know that
,
and

Plugging the values we have.




Then Mr.Comer's speed after
sec

b.
Lets find the distance and recall our third equation of motion.

So
distance covered.
Dividing both sides with 2a we have.

Plugging the values.


So Mr.Comer will travel a distance of
.