1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Arlecino [84]
3 years ago
6

Karl and Susan have agreed to come to our party, _______ has made Maria very happy.   that   which   what   who​

Engineering
1 answer:
Aleks04 [339]3 years ago
4 0

Answer:

that

I am not sure that this is the answer

but i hopethis will help you

You might be interested in
A prototype boat is 30 meters long and is designed to cruise at 9 m/s. Its drag is to be simulated by a 0.5-meter-long model pul
Ghella [55]

Answer:

a) 1.16 m/s

b)  1/216000

c)  (√15)/6480000

Explanation:

The parameters given are;

Length of boat prototype, lp = 30 m

Speed of boat prototype = 9 m/s

Length of boat model, lm= 0.5 m

a) lm/lp = 0.5/30 = 1/60 = ∝

(vm/vp) = ∝^(1/2) = √∝ = (1/60)^(1/2)

vm = 9 × (1/60)^(1/2) = 1.16 m/s

b) The ratio of the model to prototype drag, Fm/Fp, is given as follows;

Fm/Fp = (vm/vp)²×(lm/lp)² = ∝³

Fm/Fp = (1/60)³ = 1/216000

c) The ratio of the model to prototype power  pm/p_p = (Fm/Fp) × (vm/vp) = ∝³×√∝

The ratio of the model to prototype power  pm/p_p = √(1/60) × (1/60)³

pm/p_p = √(1/60) × (1/60)³ = (√15)/6480000

6 0
3 years ago
A horizontal curve on a two-lane road is designed with a 2,300-ft radius, 12-ft lanes, and a 65-mph design speed. Determine the
Ierofanga [76]

Answer:

distance = 22.57 ft

superelevation rate = 2%

Explanation:

given data

radius = 2,300-ft

lanes width = 12-ft

no of lane = 2

design speed = 65-mph

solution

we get here sufficient sight distance SSD that is express as

SSD = 1.47 ut + \frac{u^2}{30(\frac{a}{g}\pm G)}     ..............1

here u is speed and t is reaction time i.e 2.5 second and a is here deceleration rate i.e 11.2 ft/s² and g is gravitational force i.e 32.2 ft/s² and G is gradient i.e 0 here

so put here value and we get

SSD = 1.47 × 65 ×2.5  + \frac{65^2}{30(\frac{11.2}{32.2}\pm 0)}

solve it we get

SSD = 644 ft  

so here minimum distance clear from the inside edge of the inside lane is

Ms = Rv ( 1  - cos (\frac{28.65 SSD}{Rv}) )        .....................2

here Rv is = R - one lane width

Rv = 2300 - 6 = 2294 ft

put value in equation 2 we get

Ms = 2294 ( 1  - cos (\frac{28.65 \times 664}{2294})  )  

solve it we get

Ms = 22.57 ft

and

superelevation rate for the curve will be here as

R  = \frac{u^2}{15(e+f)}  ..................3

here f is coefficient of friction that is 0.10

put here value and we get e

2300 = \frac{65^2}{15(e+0.10)}

solve it we get

e = 2%

3 0
3 years ago
A solid circular rod that is 600 mm long and 20 mm in diameter is subjected to an axial force of P = 50 kN The elongation of the
Kay [80]

Answer:

a) V = 0.354

b)  G = 25.34 GPA

Explanation:

Solution:

We first determine Modulus of Elasticity and Modulus of rigidity

Elongation of rod ΔL = 1.4 mm

Normal stress, δ = P/A

Where P = Force acting on the cross-section

A = Area of the cross-section

Using Area, A = π/4 · d²

= π/4 · (0.0020)²  = 3.14 × 10⁻⁴m²

δ = 50/3.14 × 10⁻⁴    = 159.155 MPA

E(long) = Δl/l  = 1.4/600 = 2.33 × 10⁻³mm/mm

Modulus of Elasticity Е = δ/ε

= 159.155 × 10⁶/2.33 × 10⁻³    = 68.306 GPA

Also final diameter d(f) = 19.9837 mm

Initial diameter d(i) = 20 mm

Poisson said that V = Е(elasticity)/Е(long)

= -  <u>( 19.9837 - 20 /20)</u>

        2.33 × 10⁻³                  

= 0.354,

∴ v = 0.354

Also G = Е/2. (1+V)

=  68.306 × 10⁹/ 2.(1+ 0.354)

= 25.34 GPA

⇒ G = 25.34 GPA

5 0
4 years ago
Air enters a cmpressor at 20 deg C and 80 kPa and exits at 800 kPa and 200 deg C. The power input is 400 kW. Find the heat trans
aksik [14]

Answer:

The heat is transferred is at the rate of 752.33 kW

Solution:

As per the question:

Temperature at inlet, T_{i} = 20^{\circ}C = 273 + 20 = 293 K

Temperature at the outlet, T_{o} = 200{\circ}C = 273 + 200 = 473 K

Pressure at inlet, P_{i} = 80 kPa = 80\times 10^{3} Pa

Pressure at outlet, P_{o} = 800 kPa = 800\times 10^{3} Pa

Speed at the outlet, v_{o} = 20 m/s

Diameter of the tube, D = 10 cm = 10\times 10^{- 2} m = 0.1 m

Input power, P_{i} = 400 kW = 400\times 10^{3} W

Now,

To calculate the heat transfer, Q, we make use of the steady flow eqn:

h_{i} + \frac{v_{i}^{2}}{2} + gH  + Q = h_{o} + \frac{v_{o}^{2}}{2} + gH' + p_{s}

where

h_{i} = specific enthalpy at inlet

h_{o} = specific enthalpy at outlet

v_{i} = air speed at inlet

p_{s} = specific power input

H and H' = Elevation of inlet and outlet

Now, if

v_{i} = 0 and H = H'

Then the above eqn reduces to:

h_{i} + gH + Q = h_{o} + \frac{v_{o}^{2}}{2} + gH + p_{s}

Q = h_{o} - h_{i} + \frac{v_{o}^{2}}{2} + p_{s}                (1)

Also,

p_{s} = \frac{P_{i}}{ mass, m}

Area of cross-section, A = \frac{\pi D^{2}}{4} =\frac{\pi 0.1^{2}}{4} = 7.85\times 10^{- 3} m^{2}

Specific Volume at outlet, V_{o} = A\times v_{o} = 7.85\times 10^{- 3}\times 20 = 0.157 m^{3}/s

From the eqn:

P_{o}V_{o} = mRT_{o}

m = \frac{800\times 10^{3}\times 0.157}{287\times 473} = 0.925 kg/s

Now,

p_{s} = \frac{400\times 10^{3}}{0.925} = 432.432 kJ/kg

Also,

\Delta h = h_{o} - h_{i} = c_{p}\Delta T =c_{p}(T_{o} - T_{i}) = 1.005(200 - 20) = 180.9 kJ/kg

Now, using these values in eqn (1):

Q = 180.9 + \frac{20^{2}}{2} + 432.432 = 813.33 kW

Now, rate of heat transfer, q:

q = mQ = 0.925\times 813.33 = 752.33 kW

4 0
3 years ago
Select the correct answer.
cricket20 [7]

Answer:

A.

The power generated by a wind farm is not constant because of irregular wind patterns.

5 0
3 years ago
Other questions:
  • Where are revolved sections placed in a print? A) in between break lines B) cutting planes are used to identify their locations
    12·1 answer
  • 2.14 (a) Using series/parallel resistance reductions, find the equivalent resistance between terminals A and B in the circuit of
    14·1 answer
  • Explain how the objects in a battery work with its components
    10·1 answer
  • In casting experiments performed using a certain alloy and type of sand mold, it took 170 sec for a cube-shaped casting to solid
    11·2 answers
  • Pls help me answer my module
    13·1 answer
  • A wine aerator is a small, in-bottle, hand-held pour-through or decantor top device using the venturi effect for aerating the wi
    9·1 answer
  • 1. Using the formula above, complete this task.
    9·1 answer
  • What are the functions of the peripheral nervous system
    6·2 answers
  • What is a beam on a bridge? what does it do?
    6·1 answer
  • Which type of engineer is needed in the following scenario?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!