Answer:
Hydrogen sulfide
Explanation:
A nonoxidizing acid is the acid which cannot act as oxidizing agent and thus furnish hydrogen ions. Example: HCl
Iron(II) sulfide reacts with nonoxidizing acid, say hydrochloric acid to give rotten egg smelling gas, H₂S (Hydrogen sulfide).
The reaction is shown below:
FeS (s) + 2HCl (aq) ⇒ FeCl₂ (s) + H₂S (g)
A general reaction is also shown below of the reaction of Iron(II) sulfide with any nonoxidizing acid, HX as:
FeS (s) + 2HX (aq) ⇒ FeX₂ (s) + H₂S (g)
a. 381.27 m/s
b. the rate of effusion of sulfur dioxide = 2.5 faster than nitrogen triiodide
<h3>Further explanation</h3>
Given
T = 100 + 273 = 373 K
Required
a. the gas speedi
b. The rate of effusion comparison
Solution
a.
Average velocities of gases can be expressed as root-mean-square averages. (V rms)

R = gas constant, T = temperature, Mm = molar mass of the gas particles
From the question
R = 8,314 J / mol K
T = temperature
Mm = molar mass, kg / mol
Molar mass of Sulfur dioxide = 64 g/mol = 0.064 kg/mol

b. the effusion rates of two gases = the square root of the inverse of their molar masses:

M₁ = molar mass sulfur dioxide = 64
M₂ = molar mass nitrogen triodide = 395

the rate of effusion of sulfur dioxide = 2.5 faster than nitrogen triodide
Answer:
The Sandmeyer reaction is a chemical reaction used to synthesize aryl halides from aryl diazonium salts using copper salts as reagents or catalysts. It is an example of a radical-nucleophilic aromatic substitution.
Answer:
mass P4 = 35.998 g
Explanation:
∴ STP: P = 1 atm; T = 298 K
∴ V O2= 35.5 L
⇒ nO2 = P.V / R.T
∴ R = 0.082 atm.L/K.mol
⇒ nO2 = ((1 atm)×(35.5L))/((0.082 atm.L/K.mol)(298K))
⇒ nO2 = 1.453 mol O2
⇒ mol P4 = (1.453 molO2)×(mol P4/ 5molO2) = 0.2906 mol P4
∴ Mw P4 = 123.895 g/mol
⇒ mass P4 = (0.2906 mol P4)×(123.895 g/mol) = 35.998 g P4