You haven't told us what any of those letters represents.
I'm going to assume that ...
-- ' P ' = power
-- ' I ' = circuit current
-- ' V ' = circuit voltage
-- ' E ' = energy
-- ' t ' = time.
Now I'm ready to answer the question that I just invented.
P = I / V
V = P x I
Both of these are false statements, and can't be used to calculate anything.
P = I x V is the correct equation to calculate electrical power.
<em>E = P x t</em> is the correct equation to calculate electrical energy.
Answer:
2361 Newtons
Explanation:
From the second Newton's law of motion;
F = ma
In this case;
we are given;
Mass as 9.5 g
Initial speed as 0 m/s
Final velocity as 650 m/s
Distance is 0.85 m
Using the equation;
V² = U² + 2as
But u = 0
v² = 2as
Therefore;
a = v² ÷ 2s
= 650² ÷ 2(0.85)
= 248,529.40 m/s²
But;
F = ma
= 0.0095 kg × 248,529.40 m/s²
= 2361 Newtons
Therefore;
The average net force required to accelerate the bullet is 2361 Newtons.
Answer:
The formula for calculating Density is:
= Mass / Volume
From this formula, we can say that the relationship between Mass and Density is a direct one. In other words, if mass is increasing - all else being equal - then density will increase as well.
If mass however was decreasing, density would have to decrease as well.
For example, assume 3 bricks have masses of 5kg, 10kg and 15kg. Also assume that the bricks all have the same volume of 5 m³.
Density of 5kg brick = 5 / 5 = 1 kg/m³
Density of 10kg brick = 10 / 5 = 2kg / m³
Density of 15kg brick = 15 / 5 = 3 kg /m³
<em>Notice how density increases as mass increases and decreases when mass decreases. </em>
As per kinematics equation we are given that

now we are given that
a = 2.55 m/s^2


now we need to find x
from above equation we have



so it will cover a distance of 93.2 m
OF2 -
<span>O has 6 electrons in outer shell and F has 7 in its outer shell </span>
<span>Therefore, you have to account for 20 electrons total in the </span>
<span>structure (7+7+6 = 20) </span>
<span>therefore draw it linear first. F ---- O-----F </span>
<span>The two bonds take care of 4 electrons now you have to add another 16. </span>
<span>Therefore 3 lone pairs on each F and 2 lone pair on O. </span>
<span>If you check for formal charges, all the atoms are neutral </span>
<span>F will have 3 lone pairs + 1 bond = 7 electrons (bond = 1/2 electron for formal charge distribution) therefore both the F's are neutral </span>
<span>Now look at the O: it should have 6.. it has two lone pair and 2 bonds = 4 electrons and 2 bonds = 1 electron each = 2 electrons from bonds = 6 total electrons for formal charge which is exactly the # it should have. There is no need for any double bond in this as there are no charges to be separated. </span>
<span>Now if u look at the # of domains around O you will see if you include the lone pairs it has a sp3 hybridization (4 domains) therefore a tetrahedron which has 2 lone pairs and 2 bonds.. since there are two lone pairs, the lone pair/bond pair repulsion is so high it is going to repel the two Fluorines and form a bent structure, looks a lot like H2O. </span>