1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
schepotkina [342]
3 years ago
14

Join meet esqurzykgp bahahahah

Physics
1 answer:
sweet [91]3 years ago
4 0
Hdhfihfjfjfjbf shdhidifi suudjfifi
You might be interested in
A ball having a mass of 200 g is released from rest at a height of 400 mm above a very large fixed metal surface. If the ball re
AysviL [449]

Answer:

0.9

Explanation:

h = 400 mm, h' = 325 mm

Let the coefficient of restitution be e.

h' = e^2 x h

325 = e^2 x 400

e^2 = 0.8125

e = 0.9

5 0
3 years ago
A circuit is made of a battery, a light bulb, and a 2 resistor. The battery has a voltage of 3 volts. When connected, the ammete
Monica [59]

Answer:

3ohms

Explanation:

From Ohm's Law

V = IR

V is that voltage = 3volts

I = current = 1amp

R = resistance in ohms

Putting those values into the above formula.

3volts = 1amp×R

Making R the subject

R = 3/1

R = 3ohms

The resistance of the light bulb is 3ohms.

6 0
3 years ago
A 55.4 g sample of water at 99.61 °C is placed in a constant pressure calorimeter. Then, 23.4 g of zinc metal at 21.6 °C is adde
Zolol [24]

Answer:

The specific heat capacity of the zinc metal measured in this experiment is 0.427 J/g.°C

Explanation:

From the experimental data, the water loses heat because its initial temperature is greater than the final temperature of the mixture. On the other hand, the zinc metal gains heat because its initial temperature is less than the final temperature of the mixture

Heat loss by water = Heat gain by zinc metal

m1C1(T1 - T3) = m2C2(T3 - T2)

m1 is mass of water = 55.4 g

C1 is specific heat capacity of water = 4.2 J/g.°C

m2 is mass of zinc metal = 23.4 g

C2 is specific heat capacity of zinc metal

T1 is the initial temperature of water = 99.61 °C

T2 is the initial temperature of zinc metal = 21.6 °C

T3 is the final temperature of the mixture = 96.4 °C

55.4×4.2(99.61 - 96.4) = 23.4×C2(96.4 - 21.6)

746.9028 = 1750.32C2

C2 = 746.9028/1750.32 = 0.427 J/g.°C

3 0
3 years ago
A closely wound, circular coil with a diameter of 4.30 cm has 470 turns and carries a current of 0.460 A .
Nadusha1986 [10]

Hi there!

a)
Let's use Biot-Savart's law to derive an expression for the magnetic field produced by ONE loop.

dB = \frac{\mu_0}{4\pi} \frac{id\vec{l} \times \hat{r}}{r^2}

dB = Differential Magnetic field element

μ₀ = Permeability of free space (4π × 10⁻⁷ Tm/A)

R = radius of loop (2.15 cm = 0.0215 m)

i = Current in loop (0.460 A)

For a circular coil, the radius vector and the differential length vector are ALWAYS perpendicular. So, for their cross-product, since sin(90) = 1, we can disregard it.

dB = \frac{\mu_0}{4\pi} \frac{id\vec{l}}{r^2}

Now, let's write the integral, replacing 'dl' with 'ds' for an arc length:
B = \int \frac{\mu_0}{4\pi} \frac{ids}{R^2}

Taking out constants from the integral:
B =\frac{\mu_0 i}{4\pi R^2}  \int ds

Since we are integrating around an entire circle, we are integrating from 0 to 2π.

B =\frac{\mu_0 i}{4\pi R^2}  \int\limits^{2\pi R}_0 \, ds

Evaluate:
B =\frac{\mu_0 i}{4\pi R^2}  (2\pi R- 0) = \frac{\mu_0 i}{2R}

Plugging in our givens to solve for the magnetic field strength of one loop:

B = \frac{(4\pi *10^{-7}) (0.460)}{2(0.0215)} = 1.3443 \mu T

Multiply by the number of loops to find the total magnetic field:
B_T = N B = 0.00631 = \boxed{6.318 mT}

b)

Now, we have an additional component of the magnetic field. Let's use Biot-Savart's Law again:
dB = \frac{\mu_0}{4\pi} \frac{id\vec{l} \times \hat{r}}{r^2}

In this case, we cannot disregard the cross-product. Using the angle between the differential length and radius vector 'θ' (in the diagram), we can represent the cross-product as cosθ. However, this would make integrating difficult. Using a right triangle, we can use the angle formed at the top 'φ', and represent this as sinφ.  

dB = \frac{\mu_0}{4\pi} \frac{id\vec{l} sin\theta}{r^2}

Using the diagram, if 'z' is the point's height from the center:

r = \sqrt{z^2 + R^2 }\\\\sin\phi = \frac{R}{\sqrt{z^2 + R^2}}

Substituting this into our expression:
dB = \frac{\mu_0}{4\pi} \frac{id\vec{l}}{(\sqrt{z^2 + R^2})^2} }(\frac{R}{\sqrt{z^2 + R^2}})\\\\dB = \frac{\mu_0}{4\pi} \frac{iRd\vec{l}}{(z^2 + R^2)^\frac{3}{2}} }

Now, the only thing that isn't constant is the differential length (replace with ds). We will integrate along the entire circle again:
B = \frac{\mu_0 iR}{4\pi (z^2 + R^2)^\frac{3}{2}}} \int\limits^{2\pi R}_0, ds

Evaluate:
B = \frac{\mu_0 iR}{4\pi (z^2 + R^2)^\frac{3}{2}}} (2\pi R)\\\\B = \frac{\mu_0 iR^2}{2 (z^2 + R^2)^\frac{3}{2}}}

Multiplying by the number of loops:
B_T= \frac{\mu_0 N iR^2}{2 (z^2 + R^2)^\frac{3}{2}}}

Plug in the given values:
B_T= \frac{(4\pi *10^{-7}) (470) (0.460)(0.0215)^2}{2 ((0.095)^2 + (0.0215)^2)^\frac{3}{2}}} \\\\ =  0.00006795 = \boxed{67.952 \mu T}

5 0
1 year ago
Read 2 more answers
How much power does a crane develop doing 60,000 J of work in<br> 5.00minutes?
larisa [96]

Answer: 200W

Explanation: P = W/T

60,000 / (5*60) = 200

4 0
2 years ago
Other questions:
  • Which biome is most likely to have animals that hibernate, or sleep for long periods during the winter to avoid the cold?
    5·2 answers
  • What is difference between non uniform and uniform circular motion?
    10·1 answer
  • A tow truck drags a stalled car along a road. The chain makes an angle of 30° with the road and the tension in the chain is 1400
    8·1 answer
  • The speed at which the package hits the ground is really fast! If a package hits the ground at such a speed, it can be crushed a
    7·1 answer
  • Jack and Jill ran up the hill at 2.8 m/s . The horizontal component of Jill's velocity vector was 2.1 m/s . What was the angle o
    11·1 answer
  • Describe how to make a position-time graph.
    5·1 answer
  • The magnitude of a uniform electric field between two plates is about 1.7 × 106N/C. If the distance
    6·1 answer
  • This glass of lemonade is sitting in the hot summer sun. As time passes, in which direction will heat transfer take place?
    9·1 answer
  • Select the correct answer from each drop-down menu.
    14·1 answer
  • Horizontal angulation is: Select one: a. the side-to-side angulation. b. different when using the paralleling and bisecting tech
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!