Answer: 1.76 Nm
Explanation:
If the force pulls horizontally, this means that the force is tangent to the disk at any point of the string unwinding process, so the distance d is irrelevant.
In this case, the torque is directly given by the product of the force times the distance perpendicular to the center of the disk, which is just the radius, as follows:
τ = F * r = 16 N. (0.11) m = 1.76 Nm
Thank you for posting
your question here at brainly. Feel free to ask more questions.
<span><span>The
best and most correct answer among the choices provided by the question is </span>B.-2.71 V.</span>
Mg2+(aq) + 2e- -> Mg(s) E=-2.37 V
Cu2+(aq) + 2e- -> Cu(s) E =+ 0.34 V
Since Cu is acting as the anode, the equation needs to be
reversed.
Cu(s) -> Cu2+(aq) + 2e- E =- 0.34 V
Ecell= -2.37 V+ (- 0.34 V) = -2.71 V
<span><span>
</span><span>Hope my answer would be a great help for you. </span> </span>
<span> </span>
Answer:
Total charge provided by the battery could be 900000 C.
Maximum current provided by the battery for 37 minutes could be 405.405 A
Explanation:
Rating= 250 A-h
a. Total charge:

Suppose t=1h

We konw that
, replacing:

Total charge provided by the battery could be 900000 C.
b. Maximum current for 37 minutes

Maximum current provided by the battery for 37 minutes could be 405.405 A
Answer:
a) variation of the energy is equal to the work of the friction force
b) W = Em_{f} -Em₀
, c) he conservation of mechanical energy
Explanation:
a) In an analysis of this problem we can use the energy law, where at the moment the mechanical energy is started it is totally potential, and at the lowest point it is totally kinetic, we can suppose two possibilities, that the friction is zero and therefore by equalizing the energy we set the velocity at the lowest point.
Another case is if the friction is different from zero and in this case the variation of the energy is equal to the work of the friction force, in value it will be lower than in the calculations.
b) the calluses that he would use are to hinder the worker's friction force and energy
W = Em_{f} -Em₀
N d = ½ m v² - m g (y₂-y₁)
y₂-y₁ = 35 -10 = 25m
c) if there is no friction, the physical principle is the conservation of mechanical energy
If there is friction, the principle is that the non-conservative work is equal to the variation of the energy
The radius of the prop blade of an airplane is determined as 4.25 m.
<h3>
Radius of the prop blade</h3>
The radius of the prop blade of an airplane is calculated as follows;
a = v²/r
where;
- v is the linear speed
- r is the radius of the prop blade
- a is the centripetal acceleration
r = v²/a
r = (875²)/(180,000)
r = 4.25 m
Thus, the radius of the prop blade of an airplane is determined as 4.25 m.
Learn more about centripetal acceleration here: brainly.com/question/79801
#SPJ1