1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
taurus [48]
3 years ago
7

Protons, neutrons, and electrons are the 3 particles that make up an atom. True or False

Physics
1 answer:
bekas [8.4K]3 years ago
4 0
True

Hope that helps
You might be interested in
The electric field in a region of space increases from 0 to 2150 N/C in 5.00 s. What is the magnitude of the induced magnetic fi
Feliz [49]

To solve this problem we will use the Ampere-Maxwell law, which   describes the magnetic fields that result from a transmitter wire or loop in electromagnetic surveys. According to Ampere-Maxwell law:

\oint \vec{B}\vec{dl} = \mu_0 \epsilon_0 \frac{d\Phi_E}{dt}

Where,

B= Magnetic Field

l = length

\mu_0 = Vacuum permeability

\epsilon_0 = Vacuum permittivity

Since the change in length (dl) by which the magnetic field moves is equivalent to the perimeter of the circumference and that the electric flow is the rate of change of the electric field by the area, we have to

B(2\pi r) = \mu_0 \epsilon_0 \frac{d(EA)}{dt}

Recall that the speed of light is equivalent to

c^2 = \frac{1}{\mu_0 \epsilon_0}

Then replacing,

B(2\pi r) = \frac{1}{C^2} (\pi r^2) \frac{d(E)}{dt}

B = \frac{r}{2C^2} \frac{dE}{dt}

Our values are given as

dE = 2150N/C

dt = 5s

C = 3*10^8m/s

D = 0.440m \rightarrow r = 0.220m

Replacing we have,

B = \frac{r}{2C^2} \frac{dE}{dt}

B = \frac{0.220}{2(3*10^8)^2} \frac{2150}{5}

B =5.25*10^{-16}T

Therefore the magnetic field around this circular area is B =5.25*10^{-16}T

3 0
3 years ago
What does neutron absorption accomplish in a nuclear reactor
alexandr1967 [171]

Answer:

Its slows down the reaction

Explanation:

5 0
3 years ago
suppose you got up this morning and the lightbulb in your room wouldn't come on. Use the of the scientific method to explain how
Anna007 [38]

Answer:TEP 1: State the Problem

A problem is a question to be thought about and either solved or answered. Problems surround all of us. Each day we are faced with more problems than we realize and we use the scientific method to solve them without even thinking about it.

EXAMPLE: The lamp does not come on when you flip the switch.

Your problem may be something that you observe around you or it can be determined by researching a topic and attempting to repeat an experiment of another scientist based on what you are working with.

STEP 2: Make Observations

An observation is the act of recognizing and recording something that is happening. Observing often involves the use of measurements and instruments to take measurements with.

EXAMPLE: (1) There is a light bulb. (2) The switch is in the on position.

(3)Other lights in the house are on. (4) The electrical cord is plugged in.

You make these observations based on the things you see, hear, and in other ways notice going on around you. You may also base your observations on information you found from researching the topic. Maybe you found the manual for the lamp and read about how it is supposed to work. You might have searched for information about Thomas Edison and his invention of the light bulb. These works of others are called background research.

 

STEP 3: Form a Hypothesis

A hypothesis is an educated guess meaning an explanation for something that happens based on facts that can then be tested to try and find logical answers.

EXAMPLE: The light bulb is burned out.

Your hypothesis should answer your question of why the lamp does not come on. You can come to this conclusion based on your own knowledge or from researching how a lamp works. We assume that if the lamp is plugged in and turned on that it should light. We also know that if other lights in the house are on, some electricity is running through the house. Your hypothesis does not have to be proven correct by your experiment, it just needs to be testable.

Having more than one hypothesis is fine. There could be a number of reasons why the lamp is not lit and testing them all might be the only way to find an answer. Before beginning to experiment, use logical reason to determine if any of your hypotheses can be eliminated. Maybe the fuse is blown or the outlet is bad. The switch could be wired wrong or broken. These are all testable hypotheses that could be looked into if the light bulb is not the problem.

 

STEP 4: Experiment

An experiment is a step-by-step procedure that is carried out under controlled conditions to attempt to prove a hypothesis, discover and unknown effect or law, or to illustrate a known law.

EXAMPLE: First remove the light bulb and screw it back in tightly to make sure that it was not loose. If that does not work, take the bulb from a lamp you know is working and place it in the broken lamp. If that lights, try another bulb to be sure.

Your experimental set-up should include a control and a variable. You may include more than one variable, but this will increase the size of your experiment. It is also very important to replicate in your experimetal procedure to avoid error. This means that you should try it at least three times. From your experiment you will need to gather data. Data can be organized in charts and or graphs and numerical data should be measured using the metric system.

The Metric System

How To Organize a Data Table

How To Graph

 

STEP 5: Draw a Conclusion

A conclusion is a reasonable judgment based on the examination of data from an experiment. The result or outcome of an act or process.

EXAMPLE: The lamp lit after the bulb was changed, therefore the light bulb must have been burned out.

You might also know from experience that if the filament is broken in a light bulb, it will make a rattling sound when you shake the bulb. To confirm your results, you could shake the bul

Explanation:

5 0
3 years ago
X-rays generally have _____ energy and a _____ frequency.
Nonamiya [84]

Answer: D

X-rays generally have high energy and a high frequency.

Explanation:

High-energy X-rays or HEX-rays are very hard X-rays, with typical energies of 80–1000  keV (1 MeV), about one order of magnitude higher than conventional X-rays (and well into gamma-ray energies over 120 keV).

Radio waves have much longer wavelengths and lower frequencies than do visible light waves. In contrast, X-rays have much shorter wavelengths and higher frequencies. Likewise, red light has a longer wavelength than blue light. We can also think of light as consisting of particles or packets on information that we call photons.

3 0
3 years ago
I can use everything on my body to advance the ball but what?
ddd [48]
The answer would be hands! hope this helps
5 0
3 years ago
Other questions:
  • The first step in removing a dog with a back injury from a cage is
    6·2 answers
  • if a football player does 39,000 J of work, how much power does the football player exert in 5 minutes?
    15·1 answer
  • In an elements square on the periodic table the number with the number greatest value represent the
    7·1 answer
  • how does distance change when the amount of effort force is increasesd while the amount of work done remains the same?
    11·1 answer
  • How are different types of energy used?
    14·1 answer
  • A mountain climber stands at the top of a 47.0-m cliff that overhangs a calm pool of water. She throws two stones vertically dow
    12·1 answer
  • Someone pls help! My physics quiz is today:(
    11·2 answers
  • 2) A car going down the road has a velocity of 20 m/s. If the car continues at this
    9·2 answers
  • Suggest a situation where we can obtain more than one shadow of an object at a time?
    9·1 answer
  • A student goes the beach. She thinks that at night the sand will get cooler faster than the ?water. Which describes the student'
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!