Alloys are supposed to give greater strength to metals, which is why gold is mixed with others to make it harder. They have greater strength and are more resistant to erosion.
The expected speed is v = 85.5 km/h
v = 85.5 km/h = (85.5 km/h)*(0.2778 (m/s)/(km/h)) = 23.75 m/s
If there is an uncertainty of 2 meters in measuring the position, then within a 1-second time interval:
The lower measurement for the speed is v₁ = 21.75 m/s,
The upper measurement for the speed is v₂ = 25.75 m/s.
The range of variation is
Δv = v₂ - v₁ = 4 m/s
The uncertainty in measuring the speed is
Δv/v = 4/23.75 = 0.1684 = 16.84%
Answer: 16.8%
<u>Answer:</u> The additional information that is helpful in calculating the mole percent of XCl(s) and ZCl(s) is the molar masses of Z and X
<u>Explanation:</u>
To calculate the mole percent of a substance, we use the equation:

Mass percent means that the mass of a substance is present in 100 grams of mixture
To calculate the number of moles, we use the equation:

We require the molar masses of Z and X to calculate the mole percent of Z and X respectively
Hence, the additional information that is helpful in calculating the mole percent of XCl(s) and ZCl(s) is the molar masses of Z and X
It would be a physical change. It’s still water just in a different physical form. If it was a chemical change, it would no longer be water. For example, when the ice melts back into water...it’s still water.
Answer:
[H₂SO₄] = 6.07 M
Explanation:
Analyse the data given
8.01 m → 8.01 moles of solute in 1kg of solvent.
1.354 g/mL → Solution density
We convert the moles of solute to mass → 8.01 mol . 98g /1mol = 785.4 g
Mass of solvent = 1kg = 1000 g
Mass of solution = 1000g + 785.4 g = 1785.4 g
We apply density to determine the volume of solution
Density = Mass / volume → Volume = mass / density
1785.4 g / 1.354 g/mL = 1318.6 mL
We need this volume in L, in order to reach molarity:
1318.6 mL . 1L / 1000mL = 1.3186 L ≅ 1.32L
Molarity (mol/L) → 8.01 mol / 1.32L = 6.07M