Answers:
a) 222.22 m/s
b) 800.00 km/h
Explanation:
The speed of a wave is given by the following equation:
Where:
is the speed
is the frequency, which has an inverse relation with the period 
is the wavelength
Solving with the given units:
This is the speed of the wave in km/h
Transforming this speed to m/s:

This is the speed of the wave in m/s
Heat energy from below the ground converts water to steam to drive a steam turbine attached to an electrical generator
We could determine the acceleration using this formula

Given from the question v₀ = 23 m/s, v₁ = 0 (the car stops), t = 5 s
plug in the numbers



a = -4.6
The acceleration is -4.6 m/s²
<span> <span> The answer to your question is: increase the force applied to the object.
Two items are provided as a basis for that conclusion:
1. According to Newton's Second Law of Motion, the formula for finding force is: F = ma
where F is the force,
m is the mass of an object,
and a is the acceleration of the object.
And 2: work = force x distance or W = F x d.</span></span>
Extinct<span> might be a word you associate with animals that lived long ago, like the dinosaurs, but did you know that over 18,000 species are classified as "threatened" (susceptible to extinction) today? Scientists involved in wildlife conservation have a tough job; they are in charge of determining what needs to be done to prevent a species from becoming extinct. Habitat, food supply, and impacts of local human populations are just a few of the factors these scientists take into account. It is a lot to keep track of for a single location, but the job becomes even harder when it is a migratory animal. In this science project, you will get a firsthand look at their job. You will access </span>real<span> data about migratory birds and use satellite images to analyze their habitats, then come up with a conservation plan to protect the species from extinction.</span>