Any substance changes to another substance that means the change of the physical property. Like water () has different state which changes as the temperature changes. It remain as liquid in the room temperature, in solid form at or below 0°C and vapor phase on or above 100°C. But in all the stage or phase of the substance the composition of the water i.e. remains. Thus the chemical property remains fixed when a substance change to other substance.
Answer:
The nuclear decay of radioactive elements is a process that is a useful tool for determining the absolute age of fossils and rocks. It is used as a clock, in which daughter elements or isotopes converted from parent isotopes by decaying at a particular time.
Radioactive decay rates are constant and do not change over time. It is measured in half-life. A half-life is a time it takes half of a parent isotope to decay and converted into a stable daughter isotope. How many parent isotopes and daughter isotopes present in the fossil or their abundance can help in determining the age of fossil or rock.
Answer:
P2≈393.609Kpa so I think the answer is 394 kPa
Explanation:
PV=mRT Ideal Gas Law
m and R are constant because they dont change for the problem. That means
PV/T=mR = constant
so P1*V1/T1=P2*V2/T2 and note that the temperatures are in absolute temperatures (Kelvin) because you can't divide by zero.
So P2 = P1*V1*T2/(V2*T1) = 101325 Pa * 700 mL * 303K/(200 mL*273K)
P2 = 393609 Pa
Answer:
C. Lose three electrons to have a full outer shell
Explanation:
Al is in Group 13 of the Periodic Table, so it has three valence electrons.
It must either lose three electrons or gain five to achieve a stable octet.
It is easier to lose three electrons than it is to gain five, so Al loses three electrons.
D. is wrong, for the same reason.
A. is wrong. If Al lost three electrons, it would be breaking into a stable inner shell.
C. is wrong. Al is a metal, so it will lose electrons in a reaction.