The mass of the quarterback is 61.2 kg.
Explanation:
mass of the football player = m1 = 102 kg
mass of the quarterback = m2 = ?
velocity of the football player = v1 = 8 m/s
According to the law of conservation of momentum:
The total momentum of a system before and after the collision remains constant. Assuming the situation as an isolated system which is not affected by any external factors, we have:
m₁v₁ + m₂v₂ = (m₁+m₂)V
Here, we need to find m₂.
We assume that the quarterback is standing still when he is attacked by the football player so v₂ = 0 m/s
After the collision both of them fall to the ground with a velocity of 5 m/s so V = 5 m/s

Keywords: momentum, velocity, law of conservation of momentum
Learn more about Law of Conservation of Momentum from brainly.com/question/7538238
#learnwithBrainly
R=ut+gt^2/2
r- displacement (height to find)
u - initial speed (zero)
t - time taken
r=0*5.8 + 10*5.8^2 /2 = 168.2 meters
Answer:
c) curves downward, below the initial velocity vector
Explanation:
A projectile is usually launched from a height, where it is launched with an initial velocity. From that point the gravitational force begins to act on the projectile causing it to decay. As time passes, the projectile advances but its height decreases. So its trajectory is curved downward, below the initial velocity vector.
Answer:
-True - True - true - false -false - false
Explanation:
- True The flow depends only on the charge into the surface, not on the relative position
- True The two vectors are radial, so their relative direction do not changes
- True It just depends on the charge inside
- False, it only depends on the charge, not on the form from the integration surface
- False, because if it has a load inside it can be considered in the center, but if the load is outside the flow lines change direction with respect to the surface
- False The flow depends only on the load inside, not on its position
Answer:
For a relative frequency distribution, relative frequency is computed as the class frequency divided by the number of observations.