Answer:
Gate control theory of pain
Explanation:
The gate control theory of pain sates that non-painful input closes the nerve gates to painful input, which prevents pain sensation from traveling to the central nervous system (brain).
Therefore, the idea that large fibers in the sensory nerves can prevent impulses from reaching the brain and thus prevent the sensation of pain is part of the gate control theory of pain.
Answer:
-0.056 is the deceleration
Answer:
= 8.33 Watt
Explanation:

where,
p = resistivity
l = length
A = cross section area
Given that ,
p = resistivity = 6.0 × 10–8 Ω
l = 2m
A = cross section area = 2.0 mm × 2.0 mm = 4 x 10^-6 m^2
A = 2 x 2 mm^2 = 4 x 10^-6 m^2
p = 6 x 10^-8 ohm metre,
V = 0.5 V
Let R be the resistance of the rod

R = 3 × 10⁻²Ω
Heat generated = V^2 / R
= (0.5)^2 / (3 x 10^-2)
= 8.33 Watt
Answer:
1 mm^3 = 1.0 x 10^-9 m³
Hence;
5.23 x 10^-6 kg/mm^-3 = (5.23 x 10^-6 kg)/ 1x10^-9 m³
= 5230 kg/m³