Answer:
The correct answer to this problem is B. 7.0 X 10^-8 meters
Explanation:
To solve this problem, we have to use the following equation:
c = λν, or speed of light = wavelength*frequency
If we substitute in the values we are given by the problem, we get:
3.00 * 10^8 m/s = (4.3 * 10^15 Hz)*(wavelength)
wavelength = 6.98 * 10^-8 m
Since the given value has 2 significant figures, our answer should similarly include two significant figures since the operation in the problem was multiplication.
Therefore, the answer is B. 7.0 X 10^-8 meters.
Hope this helps!
Answer:
Explanation:
These properties are governed by intermolecular forces. The most important part here is the oxygen interaction with the surroundings. For temperature the decreasing order is pentanol, pentanal and pentane. For viscocity: pentanol, pentanal and pentane. For surface tension: pentanol, pentanal and pentane.
This order, as said before, is due to the interaction of oxygen with the surroundings, within the intermolecular forces we can find van der waals forces and hydrogen bonds, it is also know that H-bonds are stronger than van der waals forces so then that is why we have this type of interactions.
Answer:
b) The molecule has a molecular weight under 200 g/mole
Explanation:
The molecule has a molecular weight under 200 g/mole is the primary requirement for a molecule to be analyzed by Gas Chromatography.
The first practical incandescent light bulb<span>. </span>Edison<span> and his team of researchers in </span>Edison's<span> laboratory in Menlo Park, N.J., tested more than 3,000 designs for </span>bulbs<span> between 1878 and 1880. In November 1879, </span>Edison<span> filed a patent for an electric </span>lamp<span> with a carbon filament.</span>