Real gases have small attractive and repulsive forces between particles and ideal gases do not. Real gas particles have a volume and ideal gas particles do not. Real gas particles collide inelastically loses energy with collisions and ideal gas particles collide elastically.
P1/V1=P2/V2
1/22.4=4/x
X=4 multiple by 22.4
V2=89.6L
Answer:
Option D. AlCl₃, MgC₂
Explanation:
We need to dissociate all the salts, to determine the i. (Van't Hoff factor).
The salt who has the highest value, will be the better conductor of electricity
CsCl → Cs⁺ + Cl⁻ i = 2
CaCl → Ca²⁺ + Cl⁻ i = 2
CaS → Ca²⁺ + S⁻² i = 2
Li₂S → 2Li⁺ + S⁻² i = 3
KBr → K⁺ + Br⁻ i = 2
AlCl₃ → Al³⁺ + 3Cl⁻ i = 4
MgC₂ → Mg²⁺ + 2C⁻ i = 3
KI → K⁺ + I⁻ i = 2
K₂S → 2K⁺ + S⁻² i = 3
The biggest i, is in pair D.
A substance that undergoes change during a reaction, usually from coming in contact with another substance
Energy cannot be destroyed or created, but energy could be transformed or transferred. For example a skiier skiing from the mouth can have potential energy transferred into kinetic energy.