Answer:
the pressure gradient in the x direction = -15.48Pa/m
Explanation:
- The concept of partial differentiation was used in the determination of the expression for u and v.
- each is partially differentiated with respect to x and the appropriate substitution was done to get the value of the pressure gradient as shown in the attached file.
Answer:
final temperature is 424.8 K
so correct option is e 424.8 K
Explanation:
given data
pressure p1 = 1 bar
pressure p2 = 5 bar
index k = 1.3
temperature t1 = 20°C = 293 k
to find out
final temperature t2
solution
we have given compression is reversible and has an index k
so we can say temperature is
...........1
put here all these value and we get t2
t2 = 424.8
final temperature is 424.8 K
so correct option is e
Answer:
M2 = 0.06404
P2 = 2.273
T2 = 5806.45°R
Explanation:
Given that p1 = 10atm, T1 = 1000R, M1 = 0.2.
Therefore from Steam Table, Po1 = (1.028)*(10) = 10.28 atm,
To1 = (1.008)*(1000) = 1008 ºR
R = 1716 ft-lb/slug-ºR cp= 6006 ft-lb/slug-ºR fuel-air ratio (by mass)
F/A =???? = FA slugf/slugaq = 4.5 x 108ft-lb/slugfx FA slugf/sluga = (4.5 x 108)FA ft-lb/sluga
For the air q = cp(To2– To1)
(Exit flow – inlet flow) – choked flow is assumed For M1= 0.2
Table A.3 of steam table gives P/P* = 2.273,
T/T* = 0.2066,
To/To* = 0.1736 To* = To2= To/0.1736 = 1008/0.1736 = 5806.45 ºR Gives q = cp(To* - To) = (6006 ft-lb/sluga-ºR)*(5806.45 – 1008)ºR = 28819500 ft-lb/slugaSetting equal to equation 1 above gives 28819500 ft-lb/sluga= FA*(4.5 x 108) ft-lb/slugaFA =
F/A = 0.06404 slugf/slugaor less to prevent choked flow at the exit