Answer:
6.37 inch
Explanation:
Thinking process:
We need to know the flow rate of the fluid through the cross sectional pipe. Let this rate be denoted by Q.
To determine the pressure drop in the pipe:
Using the Bernoulli equation for mass conservation:

thus

The largest pressure drop (P1-P2) will occur with the largest f, which occurs with the smallest Reynolds number, Re or the largest V.
Since the viscosity of the water increases with temperature decrease, we consider coldest case at T = 50⁰F
from the tables
Re= 2.01 × 10⁵
Hence, f = 0.018
Therefore, pressure drop, (P1-P2)/p = 2.70 ft
This occurs at ae presure change of 1.17 psi
Correlating with the chart, we find that the diameter will be D= 0.513
= <u>6.37 in Ans</u>
True strain and engineering strain? True stress is defined as the load divided by the cross-sectional area of the specimen at that instant and is a true indication of the internal pressures. ... Engineering stress is defined as the load divided by the initial cross-sectional area of the specimenAnswer:
Explanation:
Answer:
# Program is written in Python Programming Language
# Comments are used for explanatory purpose
# Program starts here
# Accept input
Steps = input (Number of Steps: ")
# Calculate distance
distance = float(2000) * float(steps)
#Print Formatted Result
print('%0.2f' % distance)
# End of Program
.--------
The above program converts number of steps to miles.
At line 5, the number of steps is inputted and stored in variable named Steps.
At line 6, the number of miles is calculated by multiplying 2000 by the content of variable Steps
The result is printed at line 8