1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
rewona [7]
3 years ago
8

8 a Name the bones that articulate (join together) in the knee joint

Physics
1 answer:
Marianna [84]3 years ago
8 0

Answer:

The Femur and the Tibia

You might be interested in
The lower the angle of the slope, ________ the acceleration along the ramp, therefore, the speed at the bottom of a slope will b
pogonyaev

Answer:

Lower

Lower

gsintheta (gsinθ)

Explanation:

The sum of forces resolved parallel to the inclined plane is given by;

F - mgsinθ = 0

ma - mgsinθ = 0

ma = mgsinθ

a = gsinθ

Acceleration is proportional to angle of inclination, thus the lower the angle of the slope, lower the acceleration along the ramp.

therefore, the speed at the bottom of a slope will be lower, (velocity is directly proportional to acceleration) and, consequently, the control will be better.

The acceleration along the ramp, is gsintheta (gsinθ)

3 0
3 years ago
The following equation, N2 + 3 H2 —>2 NH3 ,describes a
mafiozo [28]
Physical change 1 is the answer
4 0
2 years ago
Read 2 more answers
A lab cart with a mass of 15 kg is moving with constant velocity, v, along a straight horizontal track. A student drops a 2 kg m
lbvjy [14]

The equation 15v_{i} + 2*0 = (15 + 2)v_{f} (option 3) represents the horizontal momentum of a 15 kg lab cart moving with a constant velocity, v, and that continues moving after a 2 kg object is dropped into it.  

The horizontal momentum is given by:

p_{i} = p_{f}

m_{1}v_{1}_{i} + m_{2}v_{2}_{i} = m_{1}v_{1}_{f} + m_{2}v_{2}_{f}

Where:

  • m₁: is the mass of the lab cart = 15 kg
  • m₂: is the <em>mass </em>of the object dropped = 2 kg
  • v_{1}_{i}: is the initial velocity of the<em> lab cart </em>
  • v_{2}_{i}: is the <em>initial velocit</em>y of the <em>object </em>= 0 (it is dropped)
  • v_{1}_{f}: is the final velocity of the<em> lab cart </em>
  • v_{2}_{f}: is the <em>final velocity</em> of the <em>object </em>

Then, the horizontal momentum is:

15v_{1}_{i} + 2*0 = 15v_{1}_{f} + 2v_{2}_{f}

When the object is dropped into the lab cart, the final velocity of the lab cart and the object <u>will be the same</u>, so:

15v_{1}_{i} + 2*0 = v_{f}(15 + 2)

Therefore, the equation 15v_{i} + 2*0 = (15 + 2)v_{f} represents the horizontal momentum (option 3).

Learn more about linear momentum here:

  • brainly.com/question/2141713?referrer=searchResults
  • brainly.com/question/2400186?referrer=searchResults

I hope it helps you!            

4 0
3 years ago
Greg is in a bike race. at mile marker four (out of ten), his speed was measured at 13.5 mph. which best describes the measured
posledela
The instantaneous speed. 
3 0
3 years ago
Read 2 more answers
Assume the radius of an atom, which can be represented as a hard sphere, is r = 1.95 Å. The atom is placed in a (a) simple cubic
Nuetrik [128]

Answer:

(a) A = 3.90 \AA

(b) A = 4.50 \AA

(c) A = 5.51 \AA

(d) A = 9.02 \AA

Solution:

As per the question:

Radius of atom, r = 1.95 \AA = 1.95\times 10^{- 10} m

Now,

(a) For a simple cubic lattice, lattice constant A:

A = 2r

A = 2\times 1.95 = 3.90 \AA

(b) For body centered cubic lattice:

A = \frac{4}{\sqrt{3}}r

A = \frac{4}{\sqrt{3}}\times 1.95 = 4.50 \AA

(c) For face centered cubic lattice:

A = 2{\sqrt{2}}r

A = 2{\sqrt{2}}\times 1.95 = 5.51 \AA

(d) For diamond lattice:

A = 2\times \frac{4}{\sqrt{3}}r

A = 2\times \frac{4}{\sqrt{3}}\times 1.95 = 9.02 \AA

6 0
3 years ago
Other questions:
  • A string is wrapped several times around the rim of a small hoop with radius 8.00 cm and mass 0.180 kg. The free end of the stri
    12·2 answers
  • If you see Sagittarius high in your night sky on June 20 and today is your birthday, what is your zodiac constellation?
    13·1 answer
  • A tennis ball traveling horizontally at 22.0 m/s suddenly hits a vertical brick wall and bounces back with a horizontal velocity
    14·1 answer
  • If the density of an object is 60 g/cm^3 and its mass is 20 grams, what is its volume in cm^3?
    15·1 answer
  • A bar extends perpendicularly from a vertical wall. The length of the bar is 2 m, and its mass is 10 kg. The free end of the rod
    5·1 answer
  • 1. Meiosis produces daughter cells that are
    12·1 answer
  • A 2 kg stone is tied to a 0.5 m string and swung around a circle at a constant angular velocity of 12 rad/s. the angular momentu
    15·1 answer
  • Complete the steps for converting 3.6 gallons per minute to milliliters per second. (1 gallon = 3.79 liters and 1 liter = 1,000
    5·1 answer
  • What type of electromagnetic wave has a frequency of around 1012 Hz?​
    12·2 answers
  • A proton moving along the positive x-axis enters a uniform magnetic field which is directed along the
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!