To calculate the mean, you add up all of the data values, and then divide that sum by the *number* of values.
For instance, if you wanted to find the mean score at a home run derby, and you’re given the following numbers for home runs scored by each player:
5, 4, 6, 5, 3, 1
You could calculate the mean by adding all of the score up
5 + 4 + 6 + 5 + 3 + 1 = 24
And dividing by the number of hitters (in this case, 6)
24 / 6 = 4
So the *mean score* of the home run derby would be 4.
Tin is classified as a metal in family 14.
Answer:
Explanation:
To solve this problem, we must understand the relationship between mass of a substance and the number of atoms.
Atoms are the smallest indivisible particles of any matter. A substance can be made up of several number of atoms in their space.
The mass of any substance is a function of the amount of atoms its contains.
The mass of a substance is related in chemistry to the amount of atoms its contains using the parameter called the number of moles.
A mole is the amount of substance that contains the Avogadro's number of particles. This number is 6.02 x 10²³ particles. The particles here can be protons, neutrons, electrons, atoms e.t.c.
Now,
Number of moles = 
Molar mass of copper = 63.6g/mole
Number of moles =
= 0.03mole
Since 1 mole of a substance contains 6.02 x 10²³atoms
0.03 mole of copper will contain 0.03 x 6.02 x 10²³atoms
= 1.89 x 10²² atoms
He needs to add 1.89 x 10²² atoms to make 2g of the sample.
Ionic bonds involve a cation and an anion. The bond is formed when an atom, typically a metal, loses an electron or electrons, and becomes a positive ion, or cation. Another atom, typically a non-metal, is able to acquire the electron(s) to become a negative ion, or anion.
One example of an ionic bond is the formation of sodium fluoride, NaF, from a sodium atom and a fluorine atom. In this reaction, the sodium atom loses its single valence electron to the fluorine atom, which has just enough space to accept it. The ions produced are oppositely charged and are attracted to one another due to electrostatic forces.
Answer:
3.02 X1023 atoms Ag limol. - - 0.50 1 moles. 6.02241023 atoms.