1.Lithium has the greater ionization energy
2. Vanadium has a greater ionization energy
0.012moldm⁻³
Explanation:
Given parameters:
Mass of AgNO₃ = 1000mg
Volume of water = 500mL
Unknown:
Molarity of solution = ?
Solution:
The molarity of a solution is the number of moles of a solute dissolved in volume of solvent.
Molarity = 
Number of moles of AgNO₃ = ?
Number of moles = 
Molar mass of AgNO₃ = 108 + 14 + 3(16) = 170g/mol
convert mass to g;
1000mg = 1g
Number of moles =
= 0.00588moles
convert the given volume to dm³;
1000mL = 1dm³;
500mL = 0.5dm³
Now solve;
Molarity =
= 0.012moldm⁻³
learn more:
Molarity brainly.com/question/9324116
#learnwithBrainly
<h2>

=
![\dfrac{[H^{+}] [A^{-}]}{[HA]}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5BH%5E%7B%2B%7D%5D%20%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
</h2>
Explanation:
- When an aqueous solution of a certain acid is prepared it is dissociated is as follows-
⇄ 
Here HA is a protonic acid such as acetic acid, 
- The double arrow signifies that it is an equilibrium process, which means the dissociation and recombination of the acid occur simultaneously.
- The acid dissociation constant can be given by -
= ![\dfrac{[H^{+}] [A^{-}]}{[HA]}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5BH%5E%7B%2B%7D%5D%20%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
- The reaction is can also be represented by Bronsted and lowry -
⇄ ![[H_3O^+] [A^-]](https://tex.z-dn.net/?f=%5BH_3O%5E%2B%5D%20%5BA%5E-%5D)
- Then the dissociation constant will be
= ![\dfrac{[H_3O^{+}] [A^{-}]}{[HA]}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5BH_3O%5E%7B%2B%7D%5D%20%5BA%5E%7B-%7D%5D%7D%7B%5BHA%5D%7D)
Here,
is the dissociation constant of an acid.
Water polluting
increased invasive species
overfishing
electricity cuts
loss of homes