Answer:
h=12.41m
Explanation:
N=392
r=0.6m
w=24 rad/s
So the weight of the wheel is the force N divide on the gravity and also can find momentum of inertia to determine the kinetic energy at motion
moment of inertia
Kinetic energy of the rotation motion
Kinetic energy translational
Total kinetic energy
Now the work done by the friction is acting at the motion so the kinetic energy and the work of motion give the potential work so there we can find height
Answer:
Explanation:
Given
n=5
0.3 fraction recrystallize after 100 min
According to Avrami equation
where y=fraction Transformed
k=constant
t=time
Taking log both sides
At this Point we want to compute
taking log both sides
Rate of Re crystallization at this temperature
14 ms is required to reach the potential of 1500 V.
<u>Explanation:</u>
The current is measured as the amount of charge traveling per unit time. So the charge of electrons required for each current is determined as the product of current with time.
As two different current is passing at two different times, the net charge will be the different in current. So,
The electric voltage on the surface of cylinder can be obtained as the ratio of charge to the radius of the cylinder.
Here , q is the charge and R is the radius. As and R =17 cm = 0.17 m, then the voltage will be
The time is required to find to reach the voltage of 1500 V, so
So, 14 ms is required to reach the potential of 1500 V.
Momentum is mass in motion and only applies to objects in motion. It's a term that describes a relationship between the mass and velocity of an object, and we can see this when it is written in equation form, p = mv, where p is momentum, m is mass in kg and v is velocity in m/s.
The equation Q=CV (Charge = product of Capacitance and potential difference) tells us that the maximum charge that can be stored on a capacitor is equal to the product of it's capacitance and the potential difference across it. In this case the potential difference across the capacitor will be 12.0V (assuming circuit resistance is negligable) and it has a capacitance of 18.0μf or 18.0x10^-6f, therefore charge equals (18.0x10^-6)x12=2.16x10^-4C (Coulombs).