A prism will separate white light into a rainbow of light
Really, Gundy ? ! ?
The formula for the car's speed is given and discussed in the box. The formula is
v = √(2·g·μ·d)
Then they <em>tell</em> you that μ is 0.750 , and then they <em>tell</em> you that d = 52.9 m . Also, everybody knows that 'g' is gravity = 9.8 m/s² .
They also tell us that the mass of the car is 1,000 kg, and they tell us that it took 3.8 seconds to skid to a stop. But we already <em>have</em> all the numbers in the formula <em>without</em> knowing the car's mass or how long it took to stop. The police don't need to weigh the car, and nobody was there to measure how long the car took to stop. All they need is the length of the skid mark, which they can measure, and they'll know how fast the guy was going when he hit the brakes !
Now, can you take the numbers and plug them into the formula ? ! ?
v = √(2·g·μ·d)
v = √( 2 · 9.8 m/s² · 0.75 · 52.9 m)
v = √( 777.63 m²/s²)
v = 27.886 m/s
Rounded to 3 digits, that's <em>27.9 m/s </em>.
That's about 62.4 mile/hour .
It darkness or my depression who knows
Initial speed of Gazelle is along x direction and its value will be

also its initial height is given as

Part a)
now from kinematics along Y direction

as we know that





Part b)
distance moved horizontally

as we know that

now we will have

so it will lend at distance of 4 m.
Part c)
final velocity in vertical direction



so net speed will be



Answer: 4.19 N
Explanation: In order to determinate the tension applied on the wire we have to calculate the electric force between the conductor spheres connected by the wire.
As the wire is a conductor the spheres are at same potential so we have:
V1=V2
V1=k*Q1/r1 and V2=k*Q2/r2
where r1=r2, then
Q1=Q2
so the electric force is given by:
F=k*Q^2/d^2 where d is the distance between the spheres.
Finally replacing the values, we have
F=9*10^9(41*10^-6)^2/(1.9)^2= 4.19 N