Answer:
ΔS° = - 47.2 J/mol.K
Explanation:
ΔS°= 4(S°mH3PO4) - 6(S°mH2O) - S°mP4O10
∴ S°mH2O(l) = 69.9 J/mol.K
∴ S°mP4O10 = 231 J/mol.K
∴ S°mH3PO4 = 150.8 J/mol.K
⇒ ΔS° = 4*(150.8) - 6*(69.9) - 231
⇒ ΔS° = - 47.2 J/mol.K
A balanced equation is a prime example of the law of the conservation of mass as the number of atoms in the reactants is consistent with the number of atoms in the reactants meaning the amount of matter has not changed and no mass has been created or destroyed hence obeying the law.
∆H ° rxn =-2855.56 kJ
<h3>Further explanation</h3>
Given
ΔHf CO₂ = -393.5 kJ/mol
ΔHf H₂O = -241.82 kJ/mol
ΔHf C₂H₆ = - 84.68 kJ/mol
Reaction
2C2H6(g) + 7O2(g) -> 4CO2(g) + 6H2O(g)
Required
ΔHrxn=
Solution
<em>∆H ° rxn = ∑n ∆Hf ° (product) - ∑n ∆Hf ° (reactants) </em>
∆H ° rxn = (4.-393.5+6.-241.82)-(2.-84.68)
∆H ° rxn = (-1574-1450.92)-(-169.36)
∆H ° rxn =-3024.92+169.36
∆H ° rxn =-2855.56 kJ
Answer:
true this is correct its your econimically
I would agree with the second one, not the first. You can't always see the chemical reaction, and it isn't always sudden. But the second claim is true.