Answer: The heat needed to be removed to freeze 45.0 g of water at 0.0 °C is 15.01 KJ.
Explanation:
- Firstly, we need to define the term <em>"latent heat"</em> which is the amount of energy required "absorbed or removed" to change the phase "physical state; solid, liquid and vapor" without changing the temperature.
- Types of latent heat: depends on the phases that the change occur between them;
- Liquid → vapor, <em>latent heat of vaporization</em> and energy is absorbed.
- Vapor → liquid, latent heat of liquification and the energy is removed.
- Liquid → solid, <em>latent heat of solidification</em> and the energy is removed.
- Solid → liquid, <em>latent heat of fusion</em> and the energy is absorbed.
- In our problem, we deals with latent heat of freezing "solidification" of water.
- The latent heat of freezing of water, ΔHf, = 333.55 J/g; which means that the energy required to be removed to convert 1.0 g of water from liquid to solid "freezing" is 333.55 g at 0.0 °C.
- Then the amount of energy needed to be removed to freeze 45.0 g of water at 0.0 °C is (ΔHf x no. of grams of water) = (333.55 J/g)(45.0 g) = 15009.75 J = 15.01 KJ.
Answer:
C) non renewable resources
Explanation:
These are resources such as oil that are formed over a long period of time but are consumed very quickly.
The answer is C. If the Fours were all the way on the left it would make all of the zeros Significant figures.
Answer:
(a) 16500 grams
(b) 16500000 milligrams
(c) 16500000000 micrograms