When highly electronegative element like oxygen is directly attached to less electronegative element like hydrogen the electrons from less electronegative elements are attracted toward the highly electronegative element, making the less electronegative element deficient in electron density (partial positive) and a partial negative charge on more electronegative element is created. In such situation the intermolecular forces formed are dipole-dipole interactions or hydrogen bond interaction like in HF.
26, protons and nuetrons will always be the same
Is it multiple choice or direct?
<span>We can use the ideal gas law PV=nRT
For the first phase
The starting temperature (T1) is 273.15K (0C). n is 1 mole, R is a constant, P = 1 atm, V1 is unknown.
The end temperature (T2) is unknown, n= 1 mol, R is a constant, P = 3*P1= 3 atm, V2=V1
Since n, R, and V will be constant between the two conditions: P1/T1=P2/T2
or T2= (P2*T1)/(P1) so T2= (3 atm*273.15K)/(1 atm)= 3*273.15= 816.45K
For the second phase:
Only the temperature and volume change while n, P, and R are constant between the start and finish.
So: V1/T1=V2/T2 While we don't know the initial volume, we know that V2=2*V1 and T1=816.45K
So T2=(V2*T1)/V1= (2*V1*T1)/V1=2*T1= 2*816.45K= 1638.9K
To find the total heat added to the gas you need to subtract the original amount of heat so
1638.9K-273.15K= 1365.75K</span>