This problem is describing a gas mixture whose mole fraction of hexane in nitrogen is 0.58 and which is being fed to a condenser at 75 °C and 3.0 atm, obtaining a product at 3.0 atm and 20 °C, so that the removed heat from the system is required.
In this case, it is recommended to write the enthalpy for each substance as follows:

Whereas the specific heat of liquid and gaseous n-hexane are about 200 J/(mol*K) and 160 J/(mol*K) respectively, its condensation enthalpy is 31.5 kJ/mol, boiling point is 69 °C and the specific heat of gaseous nitrogen is about 29.1 J/(mol*K) according to the NIST data tables and
and
are the mole fractions in the gaseous mixture. Next, we proceed to the calculation of both heat terms as shown below:

It is seen that the heat released by the nitrogen is neglectable in comparison to n-hexanes, however, a rigorous calculation is being presented. Then, we add the previously calculated enthalpies to compute the amount of heat that is removed by the condenser:

Finally we convert this result to kJ:

Learn more:
Answer:
Subtract the charge from the atomic number. When an ion has a positive charge, the atom has lost electrons. To calculate the remaining number of electrons, you subtract the amount of extra charge from the atomic number. In the case of a positive ion, there are more protons than electrons.
Explanation:
<h3>
Answer:</h3>
2.0 mol C₆H₁₂O₆
<h3>
General Formulas and Concepts:</h3>
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
- Avogadro's Number - 6.022 × 10²³ atoms, molecules, formula units, etc.
<u>Stoichiometry</u>
- Using Dimensional Analysis
<h3>
Explanation:</h3>
<u>Step 1: Define</u>
1.2 × 10²⁴ molecules C₆H₁₂O₆ (glucose)
<u>Step 2: Identify Conversions</u>
Avogadro's Number
<u>Step 3: Convert</u>
- Set up:

- Divide:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 2 sig figs.</em>
1.99269 mol C₆H₁₂O₆ ≈ 2.0 mol C₆H₁₂O₆
Answer:
es una expresion de 52 necesito puntos para una pregunta sorry
Explanation:
12-12-12-14-1161-76-57-57-
Answer:
Reaction 5: Decomposition reaction.
Reaction 6: Single replacement reaction
Reaction 7: Combination reaction.
Reaction 8: Combustion reaction.
Explanation:
<u><em>Reaction 5:</em></u> 2KClO₃ → 2KCl + 3O₂.
- It is a decomposition reaction.
- A decomposition reaction is a type of chemical reaction in which a single compound breaks down into two or more elements or new compounds.
- In this reaction: potassium chlorate decomposes into two single components (potassium chloride and oxygen).
- So, it is a decomposition reaction.
<u><em>Reaction 6:</em></u> Zn + 2HCl → H₂ + ZnCl₂.
- It is a single replacement reaction.
- A single-replacement reaction, a single-displacement reaction, is a reaction by which one (or more) element(s) replaces an/other element(s) in a compound.
- It is most often occur if element is more reactive than the other, thus giving a more stable product.
- In this reaction, zinc metal (more active) displaces the hydrogen to form hydrogen gas and zinc chloride, a salt. Zinc reacts quickly with the acid to form bubbles of hydrogen.
<u><em>Reaction 7:</em></u> N₂O₅ + H₂O → 2HNO₃.
- It is a combination "synthesis" reaction.
- A synthesis reaction has two or more reactants and only one product.
- In this reaction, dinitrogen pentoxide reacts with water to produce nitric acid.
- So, it is considered as a synthetic "combination" reaction.
<u><em>Reaction 8:</em></u> 2C₂H₆ + 7O₂ → 4CO₂ + 6H₂O.
- It is a combustion reaction.
- A combustion reaction is a reaction where hydrocarbon alkane is completely burned in oxygen to produce water and carbon dioxide.
- In this reaction 1.0 mole of ethane is burned to give 4.0 moles of carbon dioxide and 6.0 moles of water.
- So, it is considered as a combustion reaction.