Answer:
I think the answer is true, sorry if I am wrong
Explanation:
Answer:
We take 20.0 mL of the 1.0 M fruit drink solution and then add 80.0 mL of water to make 100 mL of a 0.2 M fruit drink solution.
Explanation:
- Using the rule that: the no. of millimoles of a solution before dilution is equal to the no. of millimoles of the solution after the dilution.
<em>(MV) before dilution = (MV) after dilution.</em>
M before dilution = 1.0 M, V before dilution = ??? mL.
M after dilution = 0.2 M, V after dilution = 100 mL.
<em>∴ V before dilution = (MV) after dilution / M before dilution </em>= (0.2 M)(100 mL) / (1.0 M) = <em>20.0 mL.</em>
<em>So, we take 20.0 mL of the 1.0 M fruit drink solution and then add 80.0 mL of water to make 100 mL of a 0.2 M fruit drink solution.</em>
Answer:
Explanation:
The relation between frequency and wavelength is shown below as:
c is the speed of light having value
Given, Frequency = 103.4 MHz =
( as 1 MHz = 10⁶ Hz)
Thus, Wavelength is:
The percent by mass sugar of a solution : 11.07%
<h3>Further explanation</h3>
Given
mass of sugar = 12.45 g
mass of water = 100 g
Required
The percent by mass
Solution
Mass of solution :

Percent mass of sugar :

Combustion is a chemical reaction between a fuel and an oxidant, oxygen, to give off combustion products and heat. Complete combustion results when all of the fuel is consumed to form carbon dioxide and water, as in the case of a hydrocarbon fuel. Incomplete combustion results when insufficient oxygen reacts with the fuel, forming soot and carbon monoxide.
The complete combustion of propane proceeds through the following reaction:

+

-->

+

Combustion is an exothermic reaction, which means that it gives off heat as the reaction proceeds. For the complete combustion of propane, the heat of combustion is (-)2220 kJ/mole, where the minus sign indicates that the reaction is exothermic.
The molar mass of propane is 44.1 grams/mole. Using this value, the number of moles propane to be burned can be determined from the mass of propane given. Afterwards, this number of moles is multiplied by the heat of combustion to give the total heat produced from the reaction of the given mass of propane.
14.50 kg propane x <u> 1000 g </u> x <u> 1 mole propane </u> x <u> 2220 kJ </u>
1 kg 44.1 g 1 mole
=
729,931.97 kJ