Answer:
I hear points of low volume sound and points of high volume of sound.
Explanation:
This is because, since the two sources of sound have the same frequency and are separated by a distance, d = 10 mm, there would be successive points of constructive and destructive interference.
Since their frequencies are similar, we should have beats of high and low frequency.
So, at points of low frequency, the amplitude of the wave is smallest and there is destructive interference. The frequency at this point is the difference between the frequencies from both speakers. Since the frequency from both speakers is 400 Hz, we have, f - f' = 400 Hz - 400 Hz = 0 Hz. So, the volume of the sound is low(zero) at these points.
Also, at points of high frequency, the amplitude of the wave is highest and there is constructive interference. The frequency at this point is the sum between the frequencies from both speakers. Since the frequency from both speakers is 400 Hz, we have, (f + f') = 400 Hz + 400 Hz = 800 Hz. So, the volume of the sound is high at these points.
So, as you wander around the room, I should hear points of high and low sound across the room.
Answer:
velocity = 1527.52 ft/s
Acceleration = 80.13 ft/s²
Explanation:
We are given;
Radius of rotation; r = 32,700 ft
Radial acceleration; a_r = r¨ = 85 ft/s²
Angular velocity; ω = θ˙˙ = 0.019 rad/s
Also, angle θ reaches 66°
So, velocity of the rocket for the given position will be;
v = rθ˙˙/cos θ
so, v = 32700 × 0.019/ cos 66
v = 1527.52 ft/s
Acceleration is given by the formula ;
a = a_r/sinθ
For the given position,
a_r = r¨ - r(θ˙˙)²
Thus,
a = (r¨ - r(θ˙˙)²)/sinθ
Plugging in the relevant values, we obtain;
a = (85 - 32700(0.019)²)/sin66
a = (85 - 11.8047)/0.9135
a = 80.13 ft/s²
Answer: C. 1.64 x 10-3 m/s2
sir what's the question you have all you wrote is it's not b