1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
faust18 [17]
2 years ago
9

A cylindrical space capsule lands in the ocean. This capsule is 2.44 m long, 1.10 m in diameter, and weighted at one end so that

it floats with its long central axis vertical and 0.820 m of its length above the water surface. The mass density of sea water is 1025 kg/m3.What is the magnitude of the buoyant force exerted on the capsule?
Engineering
1 answer:
sukhopar [10]2 years ago
7 0

Answer:

The correct answer is "15456.8 N".

Explanation:

According to the question,

The inside volume will be:

= 3.14\times (\frac{1.1}{2} )^2\times (2.44-0.82)

= 3.14\times \frac{1.21}{4}\times 1.62

= 3.14\times 03025\times 1.62

= 1.538757 \ m^3

hence,

The buoyant force will be:

= V\times Pw\times g

= 1.538757\times 1025\times 9.8

= 15456.8 \ N

You might be interested in
When you arrive at an intersection with a stop sign in your direction, if there is no marked stop
Illusion [34]

Answer:

C: Stop before entering the pedestrian crosswalk.

Explanation:

3 0
2 years ago
Read 2 more answers
The autorotation spin characteristics of a straight-wing aircraft are induced by Group of answer choices
NemiM [27]

Answer:

More Drag on the down going wing and More Lift on the up going wing

Explanation:

The autorotation spins of blades used in airborne wind energy technology sectors help drive and move the winds and water propeller-type turbines or shafts of generators to produce electricity at altitude and transmit the electricity to earth through conductive tethers.

Sometimes autorotation takes place in rotating parachutes, kite tails. Etc.

As a result, more Drag usually induces the autorotation spin characteristics of a straight-wing aircraft on the downgoing wing and More Lift on the up-going wing.

7 0
3 years ago
Find the time-domain sinusoid for the following phasors:_________
sattari [20]

<u>Answer</u>:

a.  r(t) = 6.40 cos (ωt + 38.66°) units

b.  r(t) = 6.40 cos (ωt - 38.66°) units

c.  r(t) = 6.40 cos (ωt - 38.66°) units

d.  r(t) = 6.40 cos (ωt + 38.66°) units

<u>Explanation</u>:

To find the time-domain sinusoid for a phasor, given as a + bj, we follow the following steps:

(i) Convert the phasor to polar form. The polar form is written as;

r∠Ф

Where;

r = magnitude of the phasor = \sqrt{a^2 + b^2}

Ф = direction = tan⁻¹ (\frac{b}{a})

(ii) Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid (r(t)) as follows:

r(t) = r cos (ωt + Φ)

Where;

ω = angular frequency of the sinusoid

Φ = phase angle of the sinusoid

(a) 5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

5 + j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

(b) 5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{5^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

5 - j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(c) -5 + j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + 4^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{4}{-5})

Φ = tan⁻¹ (-0.8)

Φ = -38.66°

-5 + j4 = 6.40∠-38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt - 38.66°)

(d) -5 - j4

<em>(i) convert to polar form</em>

r = \sqrt{(-5)^2 + (-4)^2}

r = \sqrt{25 + 16}

r = \sqrt{41}

r = 6.40

Φ = tan⁻¹ (\frac{-4}{-5})

Φ = tan⁻¹ (0.8)

Φ = 38.66°

-5 - j4 = 6.40∠38.66°

(ii) <em>Use the magnitude (r) and direction (Φ) from the polar form to get the general form of the time-domain sinusoid</em>

r(t) = 6.40 cos (ωt + 38.66°)

3 0
3 years ago
A transmission line with an imperfect dielectric is connected to an ideal time-invariant voltage generator. The other end of the
kari74 [83]

Answer and Explanation:

O decreases linearly with the distance from the generator

4 0
3 years ago
If you are a mechanical engineer answer these questions:
Natasha_Volkova [10]

Answer:

1. Yes, they are all necessary.

2. Both written and verbal communication skills are of the utmost importance in business, especially in engineering. Communication skills boost you or your teams' performance because they provide clear information and expectations to help manage and deliver excellent work.

3 0
3 years ago
Other questions:
  • Why should engineers avoid obvious patterns?
    13·2 answers
  • Represent the following sentence by a Boolean expression:
    11·1 answer
  • The acceleration of a point is given. a = 20 t m/s2 When t=0, s = 50 m and v = -8 m/s. What are the position and velocity of the
    13·1 answer
  • Of the core elements of successful safety and health programs,management leadership,worker participation and what else directly
    6·1 answer
  • g The parameters of a certain transmission line operating at 휔휔=6 ×108 [rad/s] are 퐿퐿=0.35 [휇휇H/m], 퐶퐶=75 [pF/m], 퐺퐺=75 [휇휇S/m],
    12·1 answer
  • How many 3-digits numbers which are greater than 300 can be formed from 6
    12·1 answer
  • Fill in the blank with the correct response.
    8·1 answer
  • 10 properties of metals?<br> ​
    10·2 answers
  • Think about a good game story that made you feel a mix of positive and negative emotions. What was the story, what emotions did
    13·1 answer
  • How do you breed a linner?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!