According to x-ray observations, the space between galaxies in a galaxy cluster is very hot. It is because the matter between galaxies (often called the intergalactic medium) is mostly hot, ionized hydrogen with bits of heavier elements such as carbon, oxygen and silicon thrown in.
Massive structures are collapsing than at earlier times. Large collapsing structures lead to higher velocity intergalactic shocks and, as a result, significant intergalactic shock heating, with some gas heated well above the
K temperatures.
Heating also occurs as galaxies expel out most of the gas that fell into them. The final product is a warm/hot phase, with temperatures of >
K.
Now, Let's know how do you use X-rays to make space observations?
X-radiation is absorbed by the Earth's atmosphere, so instruments to detect X-rays must be taken to high altitude by balloons, sounding rockets, and satellites.
To learn more about Galaxy Cluster, here
brainly.com/question/16557484
#SPJ4
The reason why there is a difference between free-fall acceleration is a centrifugal force.
I attached a diagram that shows how this force aligns with the force of gravity.
From the diagram we can see that:

Where g' is the free-fall acceleration when there is no centrifugal force, r is the radius of the planet, and w is angular frequency of planet's rotation.

is the latitude.
We can calculate g' and wr^2 from the given conditions in the problem.

Our final equation is:

Colatitude is:

The answer is:
<h2>
Answer: either way</h2>
The balloon contains neutral charge atoms, that is, it has the same number of electrons (negative charge), protons (positive charge) and neutrons (no charge).
Then, when two objects come into contact, the electrons of one of them can become part of the other.
Thus, by bringing the balloon closer to the wall, the wall, which is also made up of atoms, will reorder its charges in such a way that its electrons or protons become part of the balloon, charging it.