1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mariana [72]
3 years ago
7

A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space at 2300C by rejectin

g its waste heat to cooling water that enters the condenser at 180C at a rate of 0.25 kg/s and leaves at 260C. The refrigerant enters the condenser at 1.2 MPa and 650C and leaves at 420C. The inlet state of the compressor is 60 kPa and -340C and the compressor is estimated to gain a net heat of 450 W from the surroundings. Determine (a) the quality of the refrigerant at the evaporator inlet, (b) the mass flow rate of the refrigerant.
Engineering
1 answer:
tensa zangetsu [6.8K]3 years ago
3 0

Correct question is;

A commercial refrigerator with refrigerant-134a as the working fluid is used to keep the refrigerated space at −30°C by rejecting its waste heat to cooling water that enters the condenser at 18°C at a rate of 0.25 kg/s and leaves at 26°C. The refrigerant enters the condenser at 1.2 MPa and 65°C and leaves at 42°C. The inlet state of the compressor is 60 kPa and −34°C and the compressor is estimated to gain a net heat of 450 W from the surroundings. Determine (a) the quality of the refrigerant at the evaporator inlet, (b) the mass flow rate of the refrigerant.

Answer:

A) Quality = 0.48

B) Mass flow rate; m' = 0.0455 kg/s

Explanation:

A) From the refrigerant R-144 table I attached,

At P=60kpa and interpolating at - 34°C,we obtain enthalpy;

h1 = 230.03 Kj/kg

Also at P= 1.2MPa which is 1200kpa and interpolating at 65°C,we obtain enthalpy ;

h2 = 295.16 Kj/Kg

Also at P= 1.2MPa which is 1200kpa and interpolating at 42°C,we obtain enthalpy ;

h3 = 111.23 Kj/Kg

h4 is equal to h3 and thus h4 = 111.23 Kj/kg

We want to find the refrigerant quality at the evaporation inlet which is state 4 and P= 60 Kpa.

Thus, from the table attached, we see that hf = 3.84 at that pressure and hg = 227.8

Now, to find the quality of the refrigerant, we'll use the formula,

x4 = (h4 - hg) /(hf - hg)

Where x4 is the quality of the refrigerant. Thus;

x4 = (111.23 - 3.84)/(227.8 - 3.84) = 0.48

B) The mass flow rate of the refrigerant can be determined by applying a 1st law energy balance across the condenser. Thus, the water properties can be obtained by using a saturated liquid at the given temperatures;

So using the first table in the image i attached; interpolating at 18°C; hw1 = hf = 75.54 kJ/kg

Also interpolating at 26°C; hw2 = hf = 109.01 kJ/kg

Now;

(m')(h2 − h3)= (m_w)(hw2 − hw1)

m' is mass flow rate

Making m' the subject, we get;

m' = [(m_w)(hw2 − hw1)]/(h2 − h3)

m' = [(0.25 kg/s)(109.01 − 75.54) kJ/kg] /(295.13 − 111.37) kJ/kg

m' = 8.3675/183.76

m' = 0.0455 kg/s

You might be interested in
An excavation is at risk for cave-in and water accumulation because of the excess soil that has accumulated. What type of excava
s344n2d4d5 [400]

Answer:

Among the different types of excavation protection system, as a way of preventing accidents against cave-ins, the sloping involves cutting back the trench wall at an angle inclined away from the excavation. Shoring requires installing aluminum hydraulic or other types of supports to prevent soil movement and cave-ins. Shielding protects workers by using trench boxes or other types of supports to prevent soil cave-ins (OSHA). In addition, the regulations do not allow employees to work on excavations where there is an accumulation of water. If this occurs, water on the site must be constantly removed by suitable equipment preventing water from accumulating. The entry of surface water into the excavations must also be prevented by means of diversion ditches, dam, or other suitable means.  

Explanation:

3 0
3 years ago
The correct area in sq. Inches and sq. Feet is: Select one: a. 966.76 sq. Inches and 8.056 sq. Feet b. 96.676 sq. Inches and 8.0
kogti [31]

Answer:

c. 96.676 sq. Inches and 0.671 sq. Feet

Explanation:

From the list of the given option, we are told to chose the correct area in sq. inches that correspond to sq. Feet.

If we recall from the knowledge of our conversion  table that,

1 sq feet = 144 sq inches

Then, let's confirm if the option were true.

a.  966.76 sq. Inches and 8.056 sq. Feet

Assuming

if 1 sq feet = 8.056

in sq inches, we have ( 8.056 × 144 ) sq inches

= 1160.064 sq. inches

So, 1160.064 sq. inches is equal to 8.056 sq. Feet. Then option 1 is wrong

b. 96.676 sq. Inches and 8.056 sq. Feet

if 1 sq feet = 8.056

in sq inches, we have ( 8.056 × 144 ) sq inches

= 1160.064 sq. inches

So, 1160.064 sq. inches is equal to 8.056 sq. Feet. Then option 2 is wrong/

c. 96.676 sq. Inches and 0.671 sq. Feet

if 1 sq feet = 0.671

in sq inches, we have ( 0.671 × 144 ) sq inches

=  96.624 sq. Inches which is closely equal to 96.676 sq. Inches

Therefore, this is the correct answer as it proves that 96.676 sq. Inches = 0.671 sq. Feet

8 0
3 years ago
How would you describe what would happen to methane if the primary bonds were to break?
erastova [34]

Answer:

All the bonds in methane (CH4CH4) are equivalent, and all have the same dissociation energy.

The product of the dissociation is methyl radical (CH3CH3). All the bonds in methyl radical are equivalent, and all have the same dissociation energy.

The product of that dissociation is methylene (CH2CH2). All the bonds in methylene are equivalent, and all have the same dissociation energy.

The product of that dissociation is methyne (CHCH) .

The C-H bonds in methane do not have the same dissociation energy as C-H bonds in methyl radical, which in turn do not have the same dissociation energy as the C-H bonds in methylene, which are again different from the C-H bond in methyne.

If (by some miracle) you were able to get all four bonds in methane to dissociate absolutely simultaneously, they would all show the same dissociation energy… but that energy, per bond broken, would be different than the energy required to break just one C-H bond in methane, because the products are different.

(In this case, it’s CH4→C+4HCH4→C+4H versus CH4→CH3+HCH4→CH3+H.)

To alter hydrocarbons you add enough energy to break a C-H bond. Why does only one bond break? What concentrates the energy on one C-H bond?

the weakest CH bond is the one that breaks. in plain alkanes it has to do with the molecular orbital interactions between neighboring carbon atoms. look at propane for example. the middle carbon has two C-C bonds, and each of those C-C bonds is strengthened by slight electron delocalization from the C-H bonds overlapping with the antibonding orbitals of the adjacent carbons.

since the C-H bonds on the middle carbon donate electron density to both of its neighbors, those two are weakest.

one of them will break preferentially.

which one actually breaks depends on the reaction conditions (kinetics). frankly it's whichever one ramdomly approaches a nucleophile first. when the nucleophile pulls of one of the H's, the other C-H bonds start to share (delocalize) the negative charge across the whole molecule. so while the middle C feels the majority of the negative charge character, the other two C's take on a fair amount as well...

by the way, alkanes don't really like to break and form anions like that.

a better example would be something like isopropyl iodide, where the C-I bond breaks and the I carries away the electron pair, forming a carbocation (also not particularly stable, but more so than the carbanion).

7 0
3 years ago
Identify three material considerations an engineer would need to consider when working on a design process.
Anika [276]

Answer:

Three material considerations are;

1. Identify and appraise the attainment of the goal of the with the design specification

2. Ascertain the required load the product being designed will experience and the suitability of the design specification to that load

3. Review the producibility of the design to ensure that it can be produced with the available technology

Explanation:

1. The appraisal of the design includes the consideration of the factors of the design and the building of reliability and efficiency into the design from the beginning

2. Ascertain if the product will require toughness, elasticity, and if will be subject to sudden or repeated loading conditions

3. Ensure that the design can be readily produced with the accessible manufacturing equipment during the conceptualization stage of the design.

4 0
3 years ago
• Suppose that a particular algorithm has time complexity T(n) = 10 ∗ 2n, and that execution of the algorithm on a particular ma
elena-s [515]

Answer:

The number of inputs processed by the new machine is 64

Solution:

As per the question:

The time complexity is given by:

T(n) = 10\times 2n

where

n = number of inputs

T = Time taken by the machine for 'n' inputs

Also

The new machine is 65 times faster than the one currently in use.

Let us assume that the new machine takes the same time to solve k operations.

Then

T(k) = 64 T(n)

\frac{T(k)}{T(n)} = 64

\frac{20k}{20n} = 64

k = 64n

Thus the new machine will process 64 inputs in the time duration T

8 0
4 years ago
Other questions:
  • A circular ceramic plate that can be modeled as a blackbody is being heated by an electrical heater. The plate is 30 cm in diame
    15·1 answer
  • Using the results of the Arrhenius analysis (Ea=93.1kJ/molEa=93.1kJ/mol and A=4.36×1011M⋅s−1A=4.36×1011M⋅s−1), predict the rate
    10·1 answer
  • Suppose a student rubs a Teflon rod with wool and then briefly touches it to an initially neutral aluminum rod suspended by insu
    6·1 answer
  • Problem 4.041 SI Refrigerant 134a enters an insulated compressor operating at steady state as saturated vapor at -26oC with a vo
    8·1 answer
  • The equation for the velocity V in a pipe with diameter d and length L, under laminar condition is given by the equation V=Δpdsq
    10·1 answer
  • Why is it important to cut all the way through an electrical wire on the first try?
    8·1 answer
  • What is MIDI in soumd and audio engineering ? ​
    12·1 answer
  • Which of the following is true regarding screw gauges and shank?
    5·1 answer
  • I really need help with my last topic,Hazard communication,if anyone can help me as soon as possible,that could be my Christmas
    12·1 answer
  • What's the best way to find the load capacity of a crane?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!