Answer:
6.66 s will it take for [AB] to reach 1/3 of its initial concentration 1.50 mol/L.
Explanation:
![Rate = k[AB]^2](https://tex.z-dn.net/?f=Rate%20%3D%20k%5BAB%5D%5E2)
The order of the reaction is 2.
Integrated rate law for second order kinetic is:
Where,
is the initial concentration = 1.50 mol/L
is the final concentration = 1/3 of initial concentration =
= 0.5 mol/L
Rate constant, k = 0.2 L/mol*s
Applying in the above equation as:-


<u>6.66 s will it take for [AB] to reach 1/3 of its initial concentration 1.50 mol/L.</u>
Answer:
This experiment is uncontrolled because two different masses of substance A are used.
Explanation:
A controlled experiment is a structured experiment aimed at testing a particular observation or observations. The setup of a controlled experiment helps to determine the reason why a particular observation occurs and what must have led to it.
In the experiment highlighted above, different masses of a substance were used, they were heated to different temperatures. The set up does not show any correlation between the masses of substances heated and the temperatures. It is even difficult to try to predict the hypothesis for this kind of experimental set up. All the variables in play can best be assumed to be independent of one another.
Answer:
2.78 x 10²³
Explanation:
1 mole contains 6.02 x 10²³ hydrogen atoms => 0.46 mole contains 0.46(6.02 x 10²³) hydrogen atoms or 2.78 x 10²³ atoms.
Caution => When to use H vs H₂ => This problem is specific for 'hydrogen atoms' but some may simply say hydrogen. In such cases use H₂ or 'molecular hydrogen' is the focus. it's a matter of semantics, H vs H₂.
Answer:
i think 35 degrees Celsius
Explanation:
cause its the same temperature
Question:
Layer 1 and 2 → Animal fossil
Layer 3 and 4 → First plant fossil
Layer 5 → Animal fossil
Layer 6→ Second plant fossil
Layer 7 → Animal fossil.
Answer:
The correct option to choose answer is;
C) Layers 3 and 4 (Secondary succession layer).
Explanation:
Secondary succession is a concept related to pliant life and it describes the notion of an ecosystem regenerates after being destroyed and it takes place when the level of disruption is not enough to do away with all present vegetation and present soil from a location.
Secondary succession is started by an incident that destroys to a large extent the present ecosystem. Events that start secondary succession includes;
1) Hurricane
2) Fire and
3) Harvesting.