Answer:
Explanation:
We can calculate the volume of the oxygen molecule as the radius of oxygen molecule is given as 2×10⁻¹⁰m.
We know that volume=4/3×πr³
volume =4/3×π(2.0×10⁻¹⁰m)³
volume=33.40×10⁻³⁰m³
Volume of oxygen molecule=33.40×10⁻³⁰m³
we know the ideal gas equation as:
PV=nRT
k=R/Na
R=k×Na
PV=n×k×Na×T
n×Na=N
PV=Nkt
p is pressure of gas
v is volume of gas
T is temperature of gas
N is numbetr of molecules
Na is avagadros number
k is boltzmann constant =1.38×10⁻²³J/K
R is real gas constant
So to calculate pressure using the formula;
PV=NkT
P=NkT/V
Since there is only one molecule of oxygen so N=1
P=[1×1.38×10⁻²³J/K×300]/[33.40×10⁻³⁰m³
p=12.39×10⁷Pascal
all the elements in group 18 are Nobel gases or inert gases . all the elements such as neon , helium, argon etc. ,their outermost shell is completely filled . The noble gases have the largest ionization energies, reflecting their chemical inertness
Answer:
Pure compounds include elements and compounds where a combination of two or more pure substances is a mixture. Only one type of atom comes in the form of a pure element. Multiple atoms consist of a molecule and different atoms consist of a compound. These are all pure substances and individually.
<u>Answer:</u> The heat required will be 58.604 kJ.
<u>Explanation:
</u>
To calculate the amount of heat required, we use the formula:
Q= heat gained or absorbed = ? J
m = mass of the substance = 100 g
c = heat capacity of water = 4.186 J/g ° C
Putting values in above equation, we get:
Q = 58604 Joules = 58.604 kJ (Conversion factor: 1 kJ = 1000J)
Thus, heat released by 100 grams of ice is 58.604kJ.
Answer:
Yes
Explanation:Like wax crayons but they can dissolve in water.