To solve this problem we will apply the concepts related to the conservation of momentum. Momentum can be defined as the product between mass and velocity. We will depart to facilitate the understanding of the demonstration, considering the initial and final momentum separately, but for conservation, they will be later matched. Thus we will obtain the value of the mass. Our values will be defined as




Initial momentum will be


After collision

Final momentum


From conservation of momentum

Replacing,





Answer:
$ 3085713685.71
Explanation:
= Actual wavelength = 700 nm
= Changed wavelength = 500 nm
Let the wavelength of red color be 700 nm and green be 500 nm
Change in wavelength is

We have the relation

The speed of the vehicle is 85714285.7143 m/s

By how much was the car speeding

The number of 10 km/h in the above speed

Cost of the ticket

The cost of the ticket is $ 3085713685.71
El calor es la transferencia de energía de un objeto más cálido a un objeto más fresco. El calor puede transferirse de tres maneras: por conducción, por convección y por radiación. La conducción es la transferencia de energía de una molécula a otra por contacto directo.
Answer:
see explanation below
Explanation:
Given that,
500°C
= 25°C
d = 0.2m
L = 10mm = 0.01m
U₀ = 2m/s
Calculate average temperature

262.5 + 273
= 535.5K
From properties of air table A-4 corresponding to
= 535.5K 
k = 43.9 × 10⁻³W/m.k
v = 47.57 × 10⁻⁶ m²/s

A)
Number for the first strips is equal to


Calculating heat transfer coefficient from the first strip


The rate of convection heat transfer from the first strip is

The rate of convection heat transfer from the fifth trip is equal to


Calculating 

The rate of convection heat transfer from the tenth strip is


Calculating

Calculating the rate of convection heat transfer from the tenth strip

The rate of convection heat transfer from 25th strip is equal to

Calculating 

Calculating 

Calculating the rate of convection heat transfer from the tenth strip
