1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kamila [148]
3 years ago
8

What is the most common frame of reference used by humans

Physics
1 answer:
valkas [14]3 years ago
4 0

Answer:

All measurements of motion will be compared to a frame of reference. Therefore, the most commonly used frame of reference is Earth itself, even though it moves.

Explanation:

You might be interested in
What is direct current? In which direction does current go according to the electron flow convention?
KatRina [158]

Answer:

Answer to the question is:

Explanation:

Direct Current:

It is that current where electrons circulate in the same amount and sense in time, that is, flowing in the same direction. Its polarity is invariable and causes a current of relatively constant amplitude to flow through a load. This type of current is known as direct current (DC), and is generated by a battery.

the current of electrons will leave the negative terminal of the battery, (because they repel each other and also repel free electrons in the copper conductor), and go to the positive terminal where there is a lack of electrons, passing through the circuit to which it is connected. In this way the electric current is produced.

4 0
3 years ago
A cylinder of radius R, length L, and mass M is released from rest on a slope inclined at angle θ. It is oriented to roll straig
inna [77]

Answer:

\mu_s=\frac{1}{3}\tan \theta

Explanation:

Let the minimum coefficient of static friction be \mu_s.

Given:

Mass of the cylinder = M

Radius of the cylinder = R

Length of the cylinder = L

Angle of inclination = \theta

Initial velocity of the cylinder (Released from rest) = 0

Since, the cylinder is translating and rolling down the incline, it has both translational and rotational motion. So, we need to consider the effect of moment of Inertia also.

We know that, for a rolling object, torque acting on it is given as the product of moment of inertia and its angular acceleration. So,

\tau =I\alpha

Now, angular acceleration is given as:

\alpha = \frac{a}{R}\\Where, a\rightarrow \textrm{linear acceleration of the cylinder}

Also, moment of inertia for a cylinder is given as:

I=\frac{MR^2}{2}

Therefore, the torque acting on the cylinder can be rewritten as:

\tau = \frac{MR^2}{2}\times \frac{a}{R}=\frac{MRa}{2}------ 1

Consider the free body diagram of the cylinder on the incline. The forces acting along the incline are mg\sin \theta\ and\ f. The net force acting along the incline is given as:

F_{net}=Mg\sin \theta-f\\But,\ f=\mu_s N\\So, F_{net}=Mg\sin \theta -\mu_s N-------- 2

Now, consider the forces acting perpendicular to the incline. As there is no motion in the perpendicular direction, net force is zero.

So, N=Mg\cos \theta

Plugging in N=Mg\cos \theta in equation (2), we get

F_{net}=Mg\sin \theta -\mu_s Mg\cos \theta\\F_{net}=Mg(\sin \theta-\mu_s \cos \theta)--------------3

Now, as per Newton's second law,

F_{net}=Ma\\Mg(\sin \theta-\mu_s \cos \theta)=Ma\\\therefore a=g(\sin \theta-\mu_s \cos \theta)------4

Now, torque acting on the cylinder is provided by the frictional force and is given as the product of frictional force and radius of the cylinder.

\tau=fR\\\frac{MRa}{2}=\mu_sMg\cos \theta\times  R\\\\a=2\times \mu_sg\cos \theta\\\\But, a=g(\sin \theta-\mu_s \cos \theta)\\\\\therefore g(\sin \theta-\mu_s \cos \theta)=2\times \mu_sg\cos \theta\\\\\sin \theta-\mu_s \cos \theta=2\mu_s\cos \theta\\\\\sin \theta=2\mu_s\cos \theta+\mu_s\cos \theta\\\\\sin \theta=3\mu_s \cos \theta\\\\\mu_s=\frac{\sin \theta}{3\cos \theta}\\\\\mu_s=\frac{1}{3}\tan \theta............(\because \frac{\sin \theta}{\cos \theta}=\tan \theta)

Therefore, the minimum coefficient of static friction needed for the cylinder to roll down without slipping is given as:

\mu_s=\frac{1}{3}\tan \theta

3 0
3 years ago
Read 2 more answers
What is the mechanical advantage of the machine shown below? a 5 b 4 c 3 d 2
Alex

Answer:

Explanation: Mechanical advantage is a measure of the force amplification achieved by using a tool, mechanical device or machine system. The device preserves the input power and simply trades off forces against movement to obtain a desired amplification in the output force.

4 0
3 years ago
When a wave is bent by traveling from one medium to another
Natalka [10]

Answer:

B. Refraction

Explanation:

Jope this helps

6 0
3 years ago
Read 2 more answers
How is it technically correct to say that a car making a u-turn can have a constant speed but cannot have a constant velocity?
saw5 [17]

During the "U" part of the turn, the car would follow an approximately circular path, and if it's moving at a constant speed, it would have to accelerate toward the center of the circle in order to change its direction.

5 0
3 years ago
Other questions:
  • The illuminance due to a 60.0-w lightbulb at 3.0m is 9.35 lx. What is the total luminous flux of the bulb
    9·1 answer
  • Where does a magnetic field occur in relation to an electrified wire?
    5·1 answer
  • Which choice below shows the order of degrees from least specialized to most specialized? Select the best answer choice.
    13·2 answers
  • Two objects attract each other with a gravitational force of magnitude 9.20×10^-9 N when separated by 19.2 cm. If the total mass
    6·1 answer
  • A red racecar accelrates at a constant rate of 5 m/s2. How much time does it take to increase its speed from 50 m/s to 60 m/s?
    13·1 answer
  • Which vector is the sum of the vectors shown below?
    8·1 answer
  • In the hydrologic cycle, water from the ocean ______ into the atmosphere where it can ______ and change back into tiny water dro
    5·2 answers
  • A 100kg object initially traveling at 20 m/s is decelerated to 10 m/s during a time interval of 10 seconds. What is the final mo
    8·2 answers
  • Find the volume of an object with a density of 3.2 g/mL and a mass of 12 g.
    14·2 answers
  • The speed of sound in water is 1,492 m/s. A sonar signal is sent straight down from a ship at a point just below the water's sur
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!