Answer:
the torque capacity is 30316.369 lb-in
Explanation:
Given data
OD = 9 in
ID = 7 in
coefficient of friction = 0.2
maximum pressure = 1.5 in-kip = 1500 lb
To find out
the torque capacity using the uniform-pressure assumption.
Solution
We know the the torque formula for uniform pressure theory is
torque = 2/3 ×
× coefficient of friction × maximum pressure ( R³ - r³ ) .....................................1
here R = OD/2 = 4.5 in and r = ID/2 = 3.5 in
now put all these value R, r, coefficient of friction and maximum pressure in equation 1 and we will get here torque
torque = 2/3 ×
× 0.2 × 1500 ( 4.5³ - 3.5³ )
so the torque = 30316.369 lb-in
I won leader solution contain 0.46 mL of hydronic I said of 0.3 potassium
Answer:
The value of Modulus of elasticity E = 85.33 ×

Beam deflection is = 0.15 in
Explanation:
Given data
width = 5 in
Length = 60 in
Mass of the person = 125 lb
Load = 125 × 32 = 4000
We know that moment of inertia is given as


I = 1.40625 
Deflection = 0.15 in
We know that deflection of the beam in this case is given as
Δ = 

E = 85.33 ×

This is the value of Modulus of elasticity.
Beam deflection is = 0.15 in
Answer:
Information such as tolerance and scale can be found in the <u>title block</u> of an engineering drawing
Explanation:
The title block of an engineering drawing can normally be found on the lower right and corner of an engineering drawing and it carries the information that are used to specify details that are specific the drawing including, the name of the project, the name of the designer, the name of the client, the sheet number, the drawing tolerance, the scale, the issue date, and other relevant information, required to link the drawing with the actual structure or item