To solve this problem we will apply the concept related to destructive interference (from the principle of superposition). This concept is understood as a superposition of two or more waves of identical or similar frequency that, when interfering, create a new wave pattern of less intensity (amplitude) at a point called a node. Mathematically it can be described as
Where,
d = Path difference
= wavelength
n = Any integer which represent the number of repetition of the spectrum
In this question the distance between the two source will be minimum for the case of minimum path difference, then n= 1
Therefore the minimum distance that should you separate two sources emitting the same waves is 2.5mm
<h3>In macroeconomic theory,liquidity preference is the demand for money, considered as liquidity.</h3>
I believe that would be D.
Cardiovascular disease generally refers to conditions that involve narrowed or blocked blood vessels that can lead to a heart attack, chest pain, or stroke. Which it has nothing to do with being infectious.
Answer:
Equilibrium quantity = 5
Equilibrium price = 40
Explanation:
given:
p = -x²-3x+80
p = 7x+5
For the equilibrium quantity the price from both the functions will be equal
thus, we have
-x² - 3x + 80 = 7x+5
⇒ x² +3x + 7x + 5 - 80 = 0
⇒x² + 10x - 75 = 0
now solving for x
x²- 5x + 15x -75 = 0
x(x-5) + 15(x-5) = 0
therefore, the two roots of the equation are
x = 5 and x = -15
since the quantity cannot be in negative
therefore, the equilibrium quantity will be = 5
now the equilibrium price can be found out by substituting the equilibrium quantity in any of the equation
thus,
p = -(5)² -3(5) + 80 = 40
or
p = 7(5) + 5 = 40
Answer:
∑F = 10.2 N
Explanation:
We have:
Initial velocity: 0.5 m/s
Final velocity: 3 m/s
Time: 1.5 s
We have all of the components needed to calculate acceleration. Let's do that, shall we?
a = vf-vo/t
a = 2.5/1.5
a = 1.7 /
Now, look at the Net Force equation:
∑F = ma
Plug in the variables, to get:
∑F = (6)(1.7)
∑F = 10.2 N (You can round this according to significant digits)