The velocity of an electron that has been accelerated through a difference of potential of 100 volts will be 5.93 *
m/s
Electrons move because they get pushed by some external force. There are several energy sources that can force electrons to move. Voltage is the amount of push or pressure that is being applied to the electrons.
By conservation of energy, the kinetic energy has to equal the change in potential energy, so KE=q*V. The energy of the electron in electron-volts is numerically the same as the voltage between the plates.
given
charge of electron = 1.6 ×
C
mass of electron = 9.1 ×
kg
Force in an electric field = q*E
potential energy is stored in the form of work done
potential energy = work done = Force * displacement
= q * (E * d)
= q * (V) = 1.6 ×
* 100
stored potential energy = kinetic energy in electric field
kinetic energy = 1/2 * m * 
= 1/2 * 9.1 ×
* 
equation both the equations
1/2 * 9.1 ×
*
= 1.6 ×
= 0.352 *
m/s
= 35.2 * 
= 5.93 *
m/s
To learn more about kinetic energy in electric field here
brainly.com/question/8666051
#SPJ4
Answer: 
Explanation:
The angular diameter
of a spherical object is given by the following formula:

Where:
is the actual diameter
is the distance to the spherical object
Hence:

This is the angular diameter
Answer:
16.8 lb is the force on the brake pad of one wheel.
Explanation:
Force applied on the piston = 
Area of the piston = 
Force applied on the brakes = 
Area of the brakes = 
Applying Pascal's law: 'For an incompressible fluid pressure at one surface is equal to the pressure at other surface'.


16.8 lb is the force on the brake pad of one wheel.
Answer:
Milk
Explanation:
It can be milk and other foods similar to milk like ice cream, cheese, yogurt, etc. This is why people say milk is good for your bones cause it has calcium
<h3><u>Answer;</u></h3>
<u> = 55.2 Coulombs </u>
<h3><u>Explanation</u>;</h3>
We can determine Charge using the formula
Q =It, where Q is the amount of charge in Coulombs, I is the current in amperes and t is the time in seconds.
I = 0.92 amperes, t = 1 minute or 60 seconds
Charge = 0.92 × 60
<u> = 55.2 Coulombs </u>