Answer:
Hydrogen
Explanation:
It is considered a special element due to its flexibility in giving up & taking in electrons, therefore making it good for organic & inorganic chemistry. Hydrogen has only one proton and one electron and is the only element which has no neutrons. it is considered as the simplest element in the universe and gives a valid reason for it to be the most abundant and common element in the universe.
Hoped this helped! If this doesn't fit your 80 word count, you could shorten it.
Answer:
Equilibrium shifts to the right
Explanation:
An exothermic reaction is one in which temperature is released to the environment. Hence, if the reaction vessel housing an exothermic reaction is touched after reaction completion, we will notice that the reaction vessel e.g beaker is hot.
To consider the equilibrium response to temperature changes, we need to consider if the reaction is exothermic or endothermic. In the case of this particular question, it has been established that the reaction is exothermic.
Heat is released to the surroundings as the reactants are at a higher energy level compared to the products. Hence, increasing the temperature will favor the formation of more reactants and as such, the equilibrium position will shift to the left to pave way for the formation of more reactants. Thus , more acetylene and hydrogen would be yielded
Answer:
[HF]₀ = 0.125M
Explanation:
NaOH + HF => NaF + H₂O
Adding 20ml of 0.200M NaOH into 25ml of HF solution neutralizes 0.004 mole of HF leaving 0.004 mole NaF in 0.045L with 0.001M H⁺ at pH = 3. This is 0.089M NaF and 0.001M HF remaining.
=> 45ml of solution with pH = 3 and contains 0.089M NaF from titration becomes a common ion problem.
HF ⇄ H⁺ + F⁻
C(eq) [HF] 10⁻³M 0.089M (<= soln after adding 20ml 0.200M NaOH)
Ka = [H⁺][F⁻]/[HF]₀ => [HF]₀ = [H⁺][F⁻]/Ka
[HF]₀ = (0.001)(0.089)/(7.1 x 10⁻⁴) M = 0.125M
Answer:
a. BH₃
Explanation:
According to the octet rules, atoms reach stability when are surrounded by eight electrons in their valence shell when they combine to form a chemical compound.
From the options, the only compound in which the central atom does not meet the octet rules is BH₃. The central atom is boron (B), which has 3 electrons in its valence shell. When B is combined with hydrogen (H), 3 electrons from the 3 atoms of H are added. The total amount of electrons is 6, fewer than 8 electrons needed to meet the rule.
hope this helps