<h2>The option ( b ) is appropriate answer </h2>
Explanation:
When a projectile is projected from height horizontally . The only force acting upon it is the downwards gravitational force of attraction due to earth .
Due to this force its vertical component of velocity , which is in the downward direction will be increased .
As there is no force horizontally , the horizontal velocity of throw will remain constant .
Thus ( b ) option is the correct option .
Answer:
the knee extensors must exert 15.87 N
Explanation:
Given the data in the question;
mass m = 4.5 kg
radius of gyration k = 23 cm = 0.23 m
angle ∅ = 30°
∝ = 1 rad/s²
distance of 3 cm from the axis of rotation at the knee r = 3 cm = 0.03 m
using the expression;
ζ = I∝
ζ = mk²∝
we substitute
ζ = 4.5 × (0.23)² × 1
ζ = 0.23805 N-m
so
from; ζ = rFsin∅
F = ζ / rsin∅
we substitute
F = 0.23805 / (0.03 × sin( 30 ° )
F = 0.23805 / (0.03 × 0.5)
F F = 0.23805 / 0.015
F = 15.87 N
Therefore, the knee extensors must exert 15.87 N
Answer:
5.68 m/s
Explanation:
The motion of the salmon is the same as a projectile: it is launched with an initial speed
at an angle of
above the horizontal.
The motion of the salmon consists of two indipendent motion:
- Along the horizontal direction, it is a uniform motion with constant velocity
So that the distance travelled is
(1)
- Along the vertical direction, it is a uniformly accelerated motion with constant acceleration downward, so the vertical displacement is
(2)
where g is the acceleration of gravity.
We know the following:
- The horizontal distance travelled by the salmon to reach the waterfall is
d = 2.33 m
- The vertical distance travelled is the height of the waterfall,
y = 0.488 m
From (1) we get:

And substituting into (2), we can solve the equation to find t, the time at which the salmon reaches the waterfall:

And then, we can use eq.(1) again to find the initial speed, u:

D. Dyspareunia
I would say d because dyspareunia means painful sex so endometriosis, cyst, pelvic infections, and allergic reactions can all cause this.
Answer:
Explanation:
Given that a centripetal force is a form of force that gives rise or causes a body to move in a curved path.
Hence;
1. When a car is being driven around a track, it is the FORCE OF FRICTION that is acting upon the turned wheels of the vehicle, which transforms into the centripetal force required for circular motion.
2. When a ball being is swung on the end of a string, TENSION FORCE acts upon the ball, which transforms the centripetal force required for circular motion.
3. When the moon is orbiting the earth, it is the FORCE OF GRAVITY acting upon the moon, which transforms the centripetal force required for circular motion.
4. A rotating wheel on the other hand has NO centripetal force because centripetal force is pull towards the center of a motion. However the speed of the object is tangent to the circle, while the direction of the force is also perpendicular to the direction of the rotating wheel.