% H = 100 - ( 52.14 + 34.73 )=13.13 %
<span>assume 100 g of this compound </span>
<span>mass H = 13.13 g </span>
<span>moles H = 13.13 g / 1.008 g/mol=13 </span>
<span>mass C = 52.14 g </span>
<span>moles C = 52.14 g/ / 12.011 g/mol=4 </span>
<span>mass O = 34.73 g </span>
<span>moles O = 34.73 g/ 15.999 g/mol=2 </span>
<span>the empirical formula is C4H13O2</span>
Ne is the smallest
B is the biggest
It goes (smallest to largest) : Ne, F,C,B
The number of moles of oxygen required to generate 28 moles of water from the reaction is 14 moles
<h3>Balanced equation </h3>
2H₂ + O₂ —> 2H₂O
From the balanced equation above,
2 moles of water were obtained from 1 mole of oxygen
<h3>How to determine the mole of oxygen needed </h3>
From the balanced equation above,
2 moles of water were obtained from 1 mole of oxygen
Therefore,
28 moles of water will be obtained from = 28 / 2 = 14 moles of oxygen
Thus, 14 moles of oxygen are needed for the reaction
Learn more about stoichiometry:
brainly.com/question/14735801
Answer:
1 (348) (D2) = 273 (2.05) (0.805) D2= 1.29 g/L
Explanation:
Answer: option E. None because in all the reactions O2 is in excess
Explanation: