Answer:
The work flow required by the compressor = 100.67Kj/kg
Explanation:
The solution to this question is obtained from the energy balance where the initial and final specific internal energies and enthalpies are taken from A-17 table from the given temperatures using interpolation .
The work flow can be determined using the equation:
M1h1 + W = Mh2
U1 + P1alph1 + ◇U + Workflow = U2 + P2alpha2
Workflow = P2alpha2 - P1alpha1
Workflow = (h2 -U2) - (h1 - U1)
Workflow = ( 684.344 - 491.153) - ( 322.483 - 229.964)
Workflow = ( 193.191 - 92.519)Kj/kg
Workflow = 100.672Kj/kg
Answer: Boyle found that when the pressure of a gas at a constant temperature is increased, the volume of the gas decreases. When the pressure of a gas is decreased, the volume increases. This relationship between pressure and volume it's called Boyle's law.
Explanation: In the 1600s, Boyle measured the volumes of gases at different pressures. Boyle found that when the pressure of a gas at a constant temperature is increased, the volume of the gas decreases. When the pressure of a gas is decreased, the volume increases. This relationship between pressure and volume it's called Boyle's law.
To determine the centroid of the object first moment of area is used.
To predict the resistance of a shape to bending and deflection which are directly proportional, second moment of area is used.
Waterfalls are created when a river flows following a descending rapid slope. The waterfall, then, flows from the source (where it starts) to the mouth (where it ends).
Waterfalls are created when the erosion of the rocks at the bottom of the slope is more powerful than the erosion of the rocks on the top.
After many years the water is able to erode the rocks on the top as well, and the waterfall slowly disappears.
Therefore the options that apply are:
b) waterfalls move towards their mouth;
c) the top or cap rock is resistant to erosion;
<span>f) waterfalls indicate a youthful river </span>
Answer:
Current will decrease.
Explanation:
When we increase the number of stepping in transformer, the voltage will increase as its is directly proportional to the number of turn of stepping. Thus as the voltage will increase, current will decrease. As per the equation of ideal transformer, E1 / E2 = I2 / I1
E1 and E2 are the voltages in primary and secondary winding and I1 and I2 are the current.
As the number of turns will be increased more inevitable losses will be generated that dissipates heat thus warming the primary.
Though the conservation of energy is obeyed but losses occur in this scenario hence step-up transformers cannot be used to create free energy.