A particle moves along a straight line with equation of motion s = f(t), where s is measured in meters and t in seconds. Find the velocity and the speed when t = 4. f(t) = 12t² + 35 t + 1
Answer:
Velocity = 131 m/s
Speed = 131 m/s
Explanation:
Equation of motion, s = f(t) = 12t² + 35 t + 1
To get velocity of the particle, let us find the first derivative of s
v (t) = ds/dt = 24t + 35
At t = 4
v(4) = 24(4) + 35
v(4) = 131 m/s
Speed is the magnitude of velocity. Since the velocity is already positive, speed is also 131 m/s
Force required to accelerate 10 kg object to 5.9 m/s/s ?
Mass = 10 kg
Acceleration = 5.9 m/s^2
Force = Mass * Acceleration
Force = 10 kg * 5.9 m/s^2
Force = 59 kg m /s^2 = 59 N
I think you forgot to give the options along with your question. I am answering the question based on my knowledge and research. <span>A business that sells products to teens would most likely create a website with a title ending in .com. I hope that this is the answer that has actually come to your great help.</span>
Answer:
Friction is a force that holds back the movement of a sliding object.
Explanation:
The two types of friction: Static friction and Kinetic friction. Static friction operates between two surfaces that aren't moving relative to each other, while kinetic friction acts between objects in motion.
Answer:
0.1111 W/m²
Explanation:
If all other parameters are constant, sound intensity is inversely proportional to the square of the distance of the sound. That is,
I ∝ (1/r²)
I = k/r²
Since k can be the constant of proportionality. k = Ir²
We can write this relation as
I₁ × r₁² = I₂ × r₂²
I₁ = 0.25 W/m²
r₁ = 16 m
I₂ = ?
r₂ = 24 m
0.25 × 16² = I₂ × 24²
I₂ = (0.25 × 16²)/24²
I₂ = 0.1111 W/m²