Answer:
The voltage drop across the bulb is 115 V
Explanation:
The voltage drop equation is given by:

Where:
ΔW is the total work done (4.6kJ)
Δq is the total charge
We need to use the definition of electric current to find Δq

Where:
I is the current (2 A)
Δt is the time (20 s)


Then, we can put this value of charge in the voltage equation.

Therefore, the voltage drop across the bulb is 115 V.
I hope it helps you!
The vector B will have two components and those components will be called resultant vectors.
<h3>What is a component vector?</h3>
A component vector is a unit vector that represents a given vector in a particular direction.
A vector can be represented in x - direction and y - direction.
- x - component of the vector = Bcosθ
- y - component of the vector = Bsinθ
Thus, the vector B will have two components and those components will be called resultant vectors.
Learn more about component vectors here: brainly.com/question/13416288
#SPJ12
We want to find the combined volume of 3 tennis balls. We will get that the combined volume is 493.7 cm^3
First, remember that for a sphere of diameter D, the volume is:

Where 3.14 is pi.
Here we know that the average diameter of a tennis ball is 6.8cm, then we can replace that in the above equation to find the volume (in average) of a single tennis ball:

Now, in 3 balls of tennis, the combined volume will be 3 times the above one, this is:

If you want to learn more about volumes, you can read:
brainly.com/question/10171109
To develop this problem it is necessary to apply the concepts related to a magnetic field in spheres.
By definition we know that the magnetic field in a sphere can be described as

Where,
a = Radius
z = Distance to the magnetic field
I = Current
Permeability constant in free space
Our values are given as
diameter of the sphere then,

Thus z = a



Re-arrange to find I,



Therefore the current at the pole of this sphere is 
So the area under a velocity time graph is distance or displacement, if you have done calculus yet you will understand that if you take the integral of a velocity function then you end up with displacement. Thats for later understanding however.
So this appears to be a right triangle so we can find the area of a triangle as:
0.5bh = A
Since our area is 10 meters lets alter our formula a bit to fit the situation:
Our base here is time and our height is velocity so:
0.5tv = Δx
So we can read off the graph that our velocity at the end, or our final velocity appears to be near 2.0 m/s
So we have v, and Δx so lets isolate for time by dividing by v and 0.5
t = Δx / 0.5v
Now lets plug all that in:
t = 10 / 0.5(2)
t = 10 seconds
Hope this helped!