Answer:
I think this answer is number B
Answer is your company’s address
Answer:
58.44 g/mol The Molarity of this concentration is 0.154 molar
Explanation:
the molar mass of NaCl is 58.44 g/mol,
0.9 % is the same thing as 0.9g of NaCl , so this means that 100 ml's of physiological saline contains 0.9 g of NaCl. One liter of physiological saline must contain 9 g of NaCl. We can determine the molarity of a physiological saline solution by dividing 9 g by 58 g... since we have 9 g of NaCl in a liter of physiological saline, but we have 58 grams of NaCl in a mole of NaCl. When we divide 9 g by 58 g, we find that physiological saline contains 0.154 moles of NaCl per liter. That means that physiological saline (0.9% NaCl) has a molarity of 0.154 molar. We can either express this as 0.154 M or 154 millimolar (154 mM).
Answer: 10.29 sec.
Explanation:
Neglecting drag and friction, and at road level , the energy developed during the time the car is accelerating, is equal to the change in kinetic energy.
If the car starts from rest, this means the following:
ΔK = 1/2 m*vf ²
As Power (by definition) is equal to Energy/Time= 75000 W= 75000 N.m/seg, in order to get time in seconds, we need to convert 100 km/h to m/sec first:
100 (Km/h)*( 1000m /1 Km)*(3600 sec/1 h)= 27,78 m/sec
Now, we calculate the change in energy:
ΔK= 1/2*2000 Kg. (27,78)² m²/sec²= 771,728 J
<h2>If P= ΔK/Δt, </h2><h2>Δt= ΔK/P= 771,728 J / 75,000 J/sec= 10.29 sec.</h2>
Answer:
See attached picture.
Explanation:
See attached picture for explanation.