By unplugging unused devices, by turning off any unused lights, and by switching your lightbulbs to something more energy efficient.
Answer:
Explanation:
Dear Student, this question is incomplete, and to attempt this question, we have attached the complete copy of the question in the image below. Please, Kindly refer to it when going through the solution to the question.
To objective is to find the:
(i) required heat exchanger area.
(ii) flow rate to be maintained in the evaporator.
Given that:
water temperature = 300 K
At a reasonable depth, the water is cold and its temperature = 280 K
The power output W = 2 MW
Efficiency
= 3%
where;



However, from the evaporator, the heat transfer Q can be determined by using the formula:
Q = UA(L MTD)
where;

Also;




LMTD = 4.97
Thus, the required heat exchanger area A is calculated by using the formula:

where;
U = overall heat coefficient given as 1200 W/m².K

The mass flow rate:

I didn’t know water has calories
Answer:
An electric current is a stream of charged particles, such as electrons or ions, moving through an electrical conductor or space. It is measured as the net rate of flow of electric charge through a surface or into a control volume. ... In electric circuits the charge carriers are often electrons moving through a wire.
The answer is C as there is more force on the left side ( excess of 5 N) which therefore pushed it to the right with a force of 5 N!