Every electrical outlet in your house, and every device or appliance that's
plugged into an outlet, are all in parallel. It's also most likely that all of yours
are in parallel with all the outlets, devices, and appliances in the homes or
apartments of a few of your neighbors.
The only things in your home that are connected in series are the switches
that turn things on and off.
Answer:
When the magnetic field is tilted so it is no longer perpendicular to the page.
When the magnetic field gets stronger.
When the size of the loop decreases.
Explanation:
According to the Faraday-Lenz law, the change of the magnetic flux over time causes an induced current, this flux is given by:

Therefore, there will be a variable magnetic flux, when the magnitude of the magnetic field (B) changes over time, when the area of the loop (S) changes over time and / or when the angle (
) between the field and the surface vector changes over time.
Answer:
The velocity of the particle from T = 0 s to T = 4 s is;
0.5 m/s
Explanation:
The given parameters from the graph are;
The initial displacement (covered) at time, t₁ = 0 s is x₁ = 1 m
The displacement covered at time, t₂ = 4 s is x₂ = 3 m
The graph of distance to time, from time t = 0 to time t = 4 is a straight line graph, with the velocity given by the rate of change of the displacement to the time which is dx/dt which is also the slope of the graph given as follows;


The velocity of the particle from t = 0 s to t = 4 s = 1/2 m/s = 0.5 m/s.
Answer:
(a) α = 35.20 rad/s^2
(b) θ = 802°
(c) v = 139.73 cm/s
(d) a = 156.64 cm/s^2
Explanation:
(a) To find the angular acceleration of the disc you use the following formula:
(1)
w: angular speed of the disc = 31.4 rad/s
wo: initial angular speed = 0 rad/s
t: time = 0.892s
You replace the values of the parameters in the equation (1):

The angular acceleration of the disc, for the given time, is 35.20rad/s^2
(b) To calculate the angle describe by the disc in such a time you use:
(2)

In degrees you have:

The angle described by the disc is 802°
(c) To calculate the tangential speed of the microbe for t=0.892s, you use the following formula:
(3)
w: angular speed for t = 0.892s = 31.4rad/s
r: radius of the disc = 4.45cm

The tangential speed is 139.73 cm/s
(d) The tangential acceleration is calculated by using the following formula:

α: angular acceleration for t=0.892s

The tangential acceleration is 156.64cm/s^2