Answer:
Explanation:
There are 3 main forces at work here, gravity, normal and friction. The gravity pulls the car straight down and is what keeps the car on the ground. Normal force is straight up from the points where the car is touching, so since the wheels are the only parts of the car touching the street, this is where all the normal force is. Friction force opposes any and all motion, the car wants to slide down the hill and would slide down the hill if there was no friction, so the friction force is in the opposite direction of the cars intended motion.
Answer:
Explanation:
The force of friction equals the sine component of the force due to gravity
Answer:
Pebble A has 1/3 the acceleration as pebble B.
Explanation:
F = m×a
mass of a = 3 × mass of b (m_a = 3 × m_b)
Same starting force, F
m_a = mass of a
m_b = mass of b
a_a = acceleration of a
a_b = acceleration of b
F = m_a × a_a = m_b × a_b
3 × m_b × a_a = m_b × a_b
3 × a_a = a_b
OR
a_a = a_b / 3
Pair production<span> is a direct conversion of radiant energy to matter. It is one of the principal ways in which high-energy gamma rays are absorbed in matter. </span>
Answer:
a = 2.94 m/s²
Explanation:
In order for the cup not to slip, the unbalanced force on cup must be equal to the frictional force:
Unbalanced Force = Frictional Force
ma = μR = μW
ma = μmg
a = μg
where,
a = maximum acceleration for the cup not to slip = ?
μ = coefficient of static friction = 0.3
g = acceleration due to gravity = 9.8 m/s²
Therefore,
a = (0.3)(9.8 m/s²)
<u>a = 2.94 m/s²</u>