1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tanya [424]
3 years ago
9

How are the particles moving and and arranged in a liquid?

Engineering
1 answer:
Ipatiy [6.2K]3 years ago
6 0

Answer:

The particles in a liquid have small spaces between them, but not as small as solids. The particles in a liquid are loosely arranged which means they do not have a fixed shape like solids, but they rather take the shape of the container they are in.

You might be interested in
What is a shearing stress? Is there a force resulting from two solids in contact to which is it similar?
Luba_88 [7]

Answer:

Shearing stresses are the stresses generated in any material when a force acts in such a way that it tends to tear off the material.

Generally the above definition is valid at an armature level, in more technical terms shearing stresses are the component of the stresses that act parallel to any plane in a material that is under stress. Shearing stresses are present in a body even if normal forces act on it along the centroidal axis.

Mathematically in a plane AB the shearing stresses are given by

\tau =\frac{Fcos(\theta )}{A}

Yes the shearing force which generates the shearing stresses is similar to frictional force that acts between the 2 surfaces in contact with each other.  

7 0
3 years ago
If you deposit today 11,613 in an account earning 8% compound interest, for how long should you invest the money in order to ear
Elanso [62]
Y = a (b)^t/p

y is total money

a is original amount

b is growth / decay factor

t is time

p is the frequency of every growth or decay

15131.76 = 11613 x 1.08^x

15131.76 / 11613 = 1.08^x

1.303… = 1.08^x

log1.303…. = xlog1.08

x = 3.43902165741 years
3 0
2 years ago
Can you use isentropic efficiency for a non-adiabatic compressor?
vodomira [7]
Mark brainliest please!

Isothermal work will be less than the adiabatic work for any given compression ratio and set of suction conditions. The ratio of isothermal work to the actual work is the isothermal efficiency. Isothermal paths are not typically used in most industrial compressor calculations.

Compressors

Compressors are used to move gases and vapors in situations where large pressure differences are necessary.

Types of Compressor

Compressors are classified by the way they work: dynamic (centrifugal and axial) or reciprocating. Dynamic compressors use a set of rotating blades to add velocity and pressure to fluid. They operate at high speeds and are driven by steam or gas turbines or electric motors. They tend to be smaller and lighter for a given service than reciprocating machines, and hence have lower costs.

Reciprocating compressors use pistons to push gas to a higher pressure. They are common in natural gas gathering and transmission systems, but are less common in process applications. Reciprocating compressors may be used when very large pressure differences must be achieved; however, since they produce a pulsating flow, they may need to have a receiver vessel to dampen the pulses.

The compression ratio, pout over pin, is a key parameter in understanding compressors and blowers. When the compression ratio is below 4 or so, a blower is usually adequate. Higher ratios require a compressor, or multiple compressor stages, be used.

When the pressure of a gas is increased in an adiabatic system, the temperature of the fluid must rise. Since the temperature change is accompanied by a change in the specific volume, the work necessary to compress a unit of fluid also changes. Consequently, many compressors must be accompanied by cooling to reduce the consequences of the adiabatic temperature rise. The coolant may flow through a jacket which surrounds the housing with liquid coolant. When multiple stage compressors are used, intercooler heat exchangers are often used between the stages.

Dynamic Compressors

Gas enters a centrifugal or axial compressor through a suction nozzle and is directed into the first-stage impeller by a set of guide vanes. The blades push the gas forward and into a diffuser section where the gas velocity is slowed and the kinetic energy transferred from the blades is converted to pressure. In a multistage compressor, the gas encounters another set of guide vanes and the compression step is repeated. If necessary, the gas may pass through a cooling loop between stages.

Compressor Work

To evaluate the work requirements of a compressor, start with the mechanical energy balance. In most compressors, kinetic and potential energy changes are small, so velocity and static head terms may be neglected. As with pumps, friction can be lumped into the work term by using an efficiency. Unlike pumps, the fluid cannot be treated as incompressible, so a differential equation is required:

Compressor Work
Evaluation of the integral requires that the compression path be known - - is it adiabatic, isothermal, or polytropic?
uncooled units -- adiabatic, isentropic compression
complete cooling during compression -- isothermal compression
large compressors or incomplete cooling -- polytropic compression
Before calculating a compressor cycle, gas properties (heat capacity ratio, compressibility, molecular weight, etc.) must be determined for the fluid to be compressed. For mixtures, use an appropriate weighted mean value for the specific heats and molecular weight.

Adiabatic, Isentropic Compression

If there is no heat transfer to or from the gas being compressed, the porocess is adiabatic and isentropic. From thermodynamics and the study of compressible flow, you are supposed to recall that an ideal gas compression path depends on:

Adiabatic Path
This can be rearranged to solve for density in terms of one known pressure and substituted into the work equation, which then can be integrated.
Adiabatic Work
The ratio of the isentropic work to the actual work is called the adiabatic efficiency (or isentropic efficiency). The outlet temperature may be calculated from
Adiabatic Temperature Change
Power is found by multiplying the work by the mass flow rate and adjusting for the units and efficiency.
Isothermal Compression

If heat is removed from the gas during compression, an isothermal compression cycle may be achieved. In this case, the work may be calculated from:

http://facstaff.cbu.edu/rprice/lectures/compress.html
4 0
3 years ago
1. A glass window of width W = 1 m and height H = 2 m is 5 mm thick and has a thermal conductivity of kg = 1.4 W/m*K. If the inn
emmasim [6.3K]

Answer:

1. \dot Q=19600\ W

2. \dot Q=120\ W

Explanation:

1.

Given:

  • height of the window pane, h=2\ m
  • width of the window pane, w=1\ m
  • thickness of the pane, t=5\ mm= 0.005\ m
  • thermal conductivity of the glass pane, k_g=1.4\ W.m^{-1}.K^{-1}
  • temperature of the inner surface, T_i=15^{\circ}C
  • temperature of the outer surface, T_o=-20^{\circ}C

<u>According to the Fourier's law the rate of heat transfer is given as:</u>

\dot Q=k_g.A.\frac{dT}{dx}

here:

A = area through which the heat transfer occurs = 2\times 1=2\ m^2

dT = temperature difference across the thickness of the surface = 35^{\circ}C

dx = t = thickness normal to the surface = 0.005\ m

\dot Q=1.4\times 2\times \frac{35}{0.005}

\dot Q=19600\ W

2.

  • air spacing between two glass panes, dx=0.01\ m
  • area of each glass pane, A=2\times 1=2\ m^2
  • thermal conductivity of air, k_a=0.024\ W.m^{-1}.K^{-1}
  • temperature difference between the surfaces, dT=25^{\circ}C

<u>Assuming layered transfer of heat through the air and the air between the glasses is always still:</u>

\dot Q=k_a.A.\frac{dT}{dx}

\dot Q=0.024\times 2\times \frac{25}{0.01}

\dot Q=120\ W

5 0
3 years ago
What is the force in kN of work done is 1.2 ms moves through 120m​
Semmy [17]

Answer:

\frac{1.2}{120}

0.01

5 0
2 years ago
Other questions:
  • What are the two safety precautions taken before driving a car​
    12·1 answer
  • A family quarantined at home in March/April 2020 has two dogs: a bull mastiff (Biggie), and a chihuahua (Smalls). Smalls has a b
    9·1 answer
  • In terms of the atomic radius, R, determine the distance between the centers of adjacent atoms for the FCC crystal structure alo
    15·1 answer
  • Describe what viscoelastic behavior means
    7·1 answer
  • What are the partial products of 2.3 x 2.6
    15·1 answer
  • Which of the following suggestions would best help alleviate the Gulf of Mexico dead zone?
    13·1 answer
  • Some wire of radius is 1.262mm has a resistance of 20Ω. Determine the resistance of a wire of the same length and material if th
    14·2 answers
  • What are difference between conic sectional and solids?
    15·1 answer
  • Which Two moon phases are directly opposite each other?
    9·2 answers
  • What person at the construction worksite keeps workers safe from asbestos exposure?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!