The electrostatic force between the two ions is 
Explanation:
The electrostatic force between two charged particle is given by Coulomb's law:

where
is the Coulomb's constant
are the two charges
r is the separation between the two charges
In this problem, the ion of sodium has a charge of

while the ion of chlorine has a charge of

And the distance between the two ions is

Substituting, we find the electrostatic force between the two ions:

where the negative sign simply means that the force is attractive, since the two ions have opposite charge.
Learn more about electrostatic force:
brainly.com/question/8960054
brainly.com/question/4273177
#LearnwithBrainly
<span>You are given a QL = -26 μC charge that is placed on the x-axis at x = - 0.2 m and a QR = 26 μC charge that is placed at x = +0.2 m. The answers are:
The x-component of the electric field at x = 0 m and y = 0.2 m is 3.
The y-component of the electric field at x = 0 m and y = 0.2 m is 2.
</span>
Answer:
F = 2985.125 N
Explanation:
Given that,
The radius of curvature of the roller coaster, r = 8 m
Speed of Micheal, v = 17 m/s
Mass of body, m = 65 kg We need to find the net force acting on Micheal. Net force act the bottom of the circle is given by :

So, the net force is 2985.125 N.
Answer:

Explanation:
According to Coulomb's law, the magnitude of the electric force between two point charges is directly proportional to the product of the magnitude of both charges and inversely proportional to the square of the distance that separates them:

Here k is the Coulomb constant. In this case, we have
,
and
. Replacing the values:

The negative sign indicates that it is an attractive force. So, the magnitude of the electric force is:

Metal is a good conductor of energy