Answer:
0.0014 moles is present in 40cm³ of 0.035M of HCl solution
Explanation:
Molarity = 0.035M
V = 40.0mL
1mL = 1cm³
V = 40cm³
0.035 moles = 1000cm³
X moles is present in 40cm³
X = (40 * 0.035) / 1000
X = 0.0014moles
0.0014 moles is present in 40cm³ of solution
120 grams of Carbon-14 decays to 15 grams in 17,190 years.
You have molarity and you have volume. Use the formula :
Molarity(M)= Moles(N)/Liter(L) to get the solution.
150 ml= .150 L
7.7 = N/.150
N=.1.155 moles of NaOH.
And since you know the moles, use the molar mass to figure out the grams.
<span> (40g/mol NaOH) x (1.155mol) =
46.2 g of NaOH.</span>
Explanation:
A process in which water vapor changes into liquid state is known as condensation. As we know that when energy is released in a reaction then it is known as exothermic reaction and when energy is absorbed in a reaction then it is known as endothermic reaction.
As vapors have high energy so, when they change into liquid state then heat energy is released by them. Therefore, condensation is an exothermic reaction.
As per Le Chatelier's principle, any disturbance caused in an equilibrium reaction will tend to shift the equilibrium in a direction away from the disturbance.
So, when there will occur a decrease in temperature then molecules of a gas will come closer to each other. Hence, there will also occur a decrease in vapor pressure of the gas.
Answer:
0.914moles
Explanation:
The number of moles in a substance can be got by dividing the number of atoms/molecules/particles by Avagadro's constant (6.02 × 10^23).
That is;
number of moles (n) = number of atom (nA) ÷ 6.02 × 10^23
According to this question, there are 5.5 x 10-23 molecules of H2O
n = 5.5 x 10^23 ÷ 6.02 × 10^23
n = 0.914 × 10^(23-23)
n = 0.914 × 10^0
n = 0.914 × 1
n = 0.914moles