Henry's Law (formulated in 1803 by William Henry) states that aa constant temperature, the amount of gas dissolved in a liquid is directly proportional to the partial pressure exerted by that gas on the liquid.
Mathematically it can be formulated as
C = H⨯P
being:
C: the molar concentration of dissolved gas A,
P: the partial pressure of it
H: Henry's constant
Substituting:
C = P * H
C = (2.50 * 0.9869) * 58.0
C = 143.1
Answer:
the solubility (in m units) is
C = 143.1
Answer:
a)
, b) 
Explanation:
The magnitude of torque is a form of moment, that is, a product of force and lever arm (distance), and force is the product of mass and acceleration for rotating systems with constant mass. That is:



Where
is the angular acceleration, which is constant as torque is constant. Angular deceleration experimented by the unpowered flywheel is:


Now, angular velocities of the unpowered flywheel at 50 seconds and 100 seconds are, respectively:
a) t = 50 s.


b) t = 100 s.
Given that friction is of reactive nature. Frictional torque works on the unpowered flywheel until angular velocity is reduced to zero, whose instant is:


Since
, then the angular velocity is equal to zero. Therefore:

Answer:
P = 5880 J
Explanation:
Given that,
The mass of a person, m = 60 kg
The height of the stairs, h = 10 m
We need to find the gravitational potential energy of the person. The formula is as follows :

Substitute all the values,

So, the required gravitational potential energy is equal to 5880 J.
Answer:
Efficiency = 30% = 0.3
Explanation:
The general formula for efficiency of a device is given as:
Efficiency = (Desired Output/ Input) * 100%
Here, in our case, we have a petrol engine as a device. So, we analyze it for the efficiency calculations. Here, we have:
Chemical Potential Energy = 1000 J
Kinetic Energy = 300 J
Heat and Sound Energy = 700 J
Now, we know that the desired output of a car or the purpose of a car is to provide Kinetic energy, while all other forms of energy such as heat and sound energies are produced as waste. And the chemical energy is provided to car as input, in form of fuel. Therefore,
Input = Chemical Potential Energy = 1000 J
Desired Output = Kinetic Energy = 300 J
Therefore,
Efficiency = (300 J/1000 J) * 100%
<u>Efficiency = 30% = 0.3</u>